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Summary 

The present report was developed as part of the research activities of the Sustainable 

Energy Transition and Digitalization of Smart Mini-Grids for Africa (SETaDiSMA) work 

package of the LEAP-RE project. SETaDiSMA aims to tackle the African mini-grid sector as 

a whole, addressing technological and energy planning challenges, digitalization research 

and development and related capacity building. The work to be developed focuses on case 

studies in Algeria, Kenya and Rwanda. 

This report, part of SETaDiSMA’s Task 13.1, System design and planning from social needs 

to technical design, constitutes deliverable D13.2 - Characterization of the electricity needs 

and resource assessment methodologies, identifies databases available to support 

SETaDiSMA’s activities, as well as methodologies for demand estimation in the different 

contexts. A description of the mini-grids in the three countries of interest is also provided.  

A reliable assessment of the primary resource for wind and solar power is essential to 

quantify the energy available to be converted at a particular site/region over a period of 

interest. In this work, a review of existing databases publicly available for performing a 

wind and/or solar resource assessment was performed. The databases identified can be 

split into three main groups according to the main source of information: i) ground-based 

stations; ii) numerical-based, and iii) satellite-based. In addition, databases with a 

combination of the different methods were also identified. For each database, the main 

features are provided. 

For the countries of interest, the number of available ground stations with data suitable to 

the identify and/or validate the most suitable database for renewable energy (RE) resource 

estimation was limited: 7 with wind speed and direction - covering three stations in Algeria, 

two in Kenya and two in Mozambique, and 3 with global horizontal irradiance (GHI) and 

direct (or beam) normal irradiance – all in Kenya. 

The results of the validation show that the wind database quality depends on the terrain 

and roughness types. This conclusion was expected since the analysed databases present 

a coarse spatial resolution being unable to represent quite well the wind behaviour over 

complex terrain or locals with medium/high roughness. In the case of solar databases, it 

was possible to benefit from another LEAP-RE work package (WP 10 - PURAMS) to identify 

the most suitable database for solar power estimation and, therefore, results are briefly 

presented in this report. The performance of solar databases, namely using satellite-based 

information, is high, being capable to provide hourly data with correlation values above 

0.96 in the three stations analysed. While some static yearly or climatological resource 

assessment information is already publicly available (e.g., Global Wind Atlas), databases 

with hourly (or sub-hourly) data with high accuracy, as needed for dynamic studies of wind 

power integration, are still scarce for the African countries. 

On the demand estimation side, an extensive literature review is conducted to assess the 

adopted techniques in rural electricity demand estimation in scientific literature. Thanks to 

this review the reader can have an understanding of the main socio-economic and cultural 

drivers that influence the electricity demand in rural areas.  

Subsequently to the review, two different methodologies for demand estimation are 

proposed as possible novel approaches compared to the reviewed literature. First is 

hypothesized the creation of a public database for correlating already connected 

communities’ appliance adoption patterns with the socio-economic and technical 

characteristics of the community and in this way estimate the possible appliance adoption 

pattern of the community under study, taking advantage of similarities in the socio-

economic structure. Secondly a set of energy-modelling-ready archetypes of rural areas 
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users are developed, to serve as first-round approximated inputs in case of scarcity of data 

to formulate realistic load profiles for the study area. 

The proposed archetypes are then validated against data collected from the studied mini-

grids adopting a Mean Bias Error technique on the number of appliances predicted versus 

the observed data. 

 

Keywords 

Renewable energy databases; Wind resource assessment; Solar resource assessment; 

Validation procedure, Mini-grids, load assessment, load profile estimation.   
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1. Introduction 

The LEAP-RE project aims to establish a long-term partnership between African and 

European stakeholders in the field of renewable energy. Among its planned actions are a 

set of eight internal research and innovation projects. One of those projects is the 

Sustainable Energy Transition and Digitalization of Smart Mini-Grids for Africa 

(SETaDiSMA) project (LEAP-RE WP13). SETaDiSMA addresses the use of renewable energy 

sources for mini-grid applications in Africa, considering both the repowering of existing 

conventional mini-grids (brown-fields) and the electrification of new communities (green-

fields), focusing on three countries: Algeria, Kenya and Rwanda. 

The present report was developed as part of the research activities of the WP 13 

SETaDiSMA project, Task 13.1 – System design and planning from social needs to technical 

design, corresponding to the project deliverable D13.2. It presents methodologies and 

tools to perform the characterization of the electricity needs and renewable energy 

resources assessment to support the design and deployment of renewable-powered 

(including hybrid) mini-grids in Africa. 

The seventh sustainable development goal (SDG) defined by the United Nation aims to 

“ensure access to affordable, reliable, sustainable and modern energy for all”1 

(Jayachandran et al., 2022). Guaranteeing access to modern clean energy options will 

impact the life of billions of persons due to the new economic opportunities and jobs, 

citizens empowerment, better education, better health and financial services, and more 

sustainable and inclusive communities, and inclusive, while contributing to climate change 

mitigation actions (ESMAP, 2022; USAID, African Union, & Power Africa, 2021). The 

“Agenda 2063” released by the African Union (Africa Union Comission, 2015) established 

that an adequate electricity infrastructure at different spatial levels from continental to 

local levels, including rural areas is crucial for the socioeconomic development of African 

countries. Despite the improvements observed in the latest years, population without 

access to electricity is still high in Africa, especially in Sub-Saharan countries, Figure 1.  

 

Figure 1 - Population without access to electricity, millions of people (Total). 

Source: https://trackingsdg7.esmap.org 

 
1 More details available at: https://www.un.org/en/chronicle/article/goal-7-ensure-access-

affordable-reliable-sustainable-and-modern-energy-all  
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According to United States Agency for International Development (USAID et al., 2021), 

sixty percent of Africans live in rural areas. Of these, only around 5% have access to 

modern electricity options2. These numbers are mainly explained by the high dispersion of 

end-users, low economic activity limiting the ability of populations to support the costs, 

distance from the national network and low population density (USAID et al., 2021; Zebra, 

van der Windt, Nhumaio, & Faaij, 2021). With the rapid technological development, mini-

grids have become a practical solution to the challenge of electrifying rural areas, being a 

sustainable alternative to the expansion of the national grid. Thus, in many cases, mini-

grids are the most efficient and economical way of providing access to energy, since they 

can i) be "easily" installed, ii) be flexible and modular, being adjusted according to the 

electricity demand, and iii) be connected to the main national grid if it expands (Zebra et 

al., 2021). Although mini-grids are not a completely new phenomenon, the technologies 

that they use improved significantly since 2012 becoming a very interesting solution for 

the electrification of rural zones (SEforALL & BloombergNEF, 2019). 

By definition, mini-grids include generation systems (using conventional, renewable energy 

and storage technologies) and distribution of electrical energy suitable to supply electricity 

to only a few spatially dispersed/remote customers or bring energy to a large number of 

people in a predetermined area. Typically, mini-grids involve only small-scale electricity 

generation that ranges from 10 kW to 10MW. A mini-grid can be composed of different 

generation technologies and are capable of operating independently from the national main 

grid (SEforALL & BloombergNEF, 2019; Zebra et al., 2021). Initially, most mini-grids 

depended on conventional energy sources such as fossil fuels (diesel and kerosene) or 

small hydroelectric power plants. With the strong cost reduction observed in recent years 

(in opposition with fossil fuels whose prices are on a continuous rise) mini-grids are 

adopting time-variable renewable energy sources (vRES) technologies in their  generation 

mix (Mbinkar, A. Asoh, Tchuidjan, & Baldeh, 2021). Solar power, in specific, is the leading 

technology installed in the last years in mini-grid projects (Figure 2) due to its modular 

and relatively easy to install in remote areas features, solar power. 

 

Figure 2 – Evolution of weight of solar PV power in the installed capacity of the 

mini girds (image extracted from (SEforALL & BloombergNEF, 2019)). 

Unlike conventional power plants, vRES (mainly wind and solar power) are weather 

dependent and, therefore, have high temporal variability, bringing additional challenges to 

a safe and reliable power system. To partially accommodate this variability and always 

 
2 Modern electricity options refer to the energy-based from sources obtained through commercialized 
market channels rather than the traditional biomass with low energy value. 
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satisfy the electricity supply/demand equilibrium, battery systems and/or fossil fuel 

generators are used as a backup. Therefore, within a mini-grid, a reliable assessment of 

the vRES resource, as well as the expected demand, is crucial for sizing the different 

components of the system, allowing to reduce initial and operational costs while 

contributing to reach SDG #7, i.e., ensuring access to affordable, reliable and sustainable 

energy for all. 

• Overview of mini-grids in Kenya  

Traditionally, mini-grids in Kenya were diesel-powered and run by the national utility, the 

Kenya Power and Lighting Company (KPLC). Since 2011, several diesel powered mini-grids 

have been transformed into hybrid systems that have an additional solar or wind power 

component, while several new mini-grids, powered exclusively by renewable energy 

technologies, have been deployed. Further hybridisation of existing mini-grids is planned 

for the near future. The development of hybrid mini-grids is one of Kenya’s important 

projects within the Scaling-Up Renewable Energy Programme (SREP)3. Hybridisation with 

renewables has had positive impacts in reducing generation costs. Research indicates that 

northern Kenya is attractive for mini-grids with large penetration of solar energy (>85%). 

The use of pre-paid meters, smart meters and remote monitoring, has positively impacted 

the performance of mini-grids in Kenya. There are about 400 mini-grids in Kenya with 282 

of them run by KPLC. 

Around two-thirds of the Kenyan population live in the fertile southern part of the country 

and can be reached by national grid extension. The remaining one-third is spread across 

the arid and semi-arid Northern and North-Eastern areas of the country, which are sparsely 

populated and therefore expensive to connect to the national grid. One of the solutions for 

electricity access is decentralized electricity generation and distribution networks, including 

off-grid solutions and mini-grids.  

For the SETaDiSMA activities, the following Kenyan mini-grids are studied:  

Eliye (Illiye) Spring mini-grid station located in Turkana Central, north west of Kenya 

was commissioned in 2019; constructed by Rural Electrification and Renewable Energy 

Corporation (REREC) and operated by KPLC. The mini-grid is of hybrid technology with 

an installed capacity of 120 kW using both diesel and solar PV. The solar PV is the 

predominantly used technology with an installed capacity of 80 kW. The diesel generator 

has a capacity of 5 kVA operating on a power factor of 0.8.   

 

Figure 3 – Picture of the Eliye (Illiye) Spring mini grid station. 

 
3 More details available at: https://www.worldbank.org/en/country/armenia/brief/srep  
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Kakuma mini-grid station in Turkana, Kakuma town, is a purely diesel operated mini-

grid owned by REREC and operated by KPLC. It has an installed capacity of 1.2 MW with 

3 generators, each with an installed capacity of 500 kVA.  

 

Figure 4 – Pictures of the Kakuma mini grid station. 

Lokichogio mini-grid station in Turkana County is a diesel operated mini-grid that was 

constructed by REREC and is currently being run by KPLC. Two diesel generators have 

been installed with a combined capacity of 640 kW which serve around 614 users; both 

commercial and residential.  

 

Figure 5 – Pictures of the Lokichogio mini grid station. 

Longech mini-grid in Turkana county is a privately owned hybrid mini-grid that runs on 

solar PV and diesel generators with a combined capacity of 67 kW. The installed capacity 

for the solar mini-grid is 50 kW while the diesel generator is of 22 kVA. 
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Figure 6 – Pictures of the Longech mini grid. 

Powerhive mini-grid sites in Kisii and Nyamira counties use solar photovoltaic 

technology in their operation. Each mini-grid can be connected to 120 households within 

a 1 km radius.  

Faza station in Lamu county, is a diesel operated mini-grid owned by REREC and operated 

by KPLC with a capacity of 2 030 kW with 6 000 users dependent on it.  

Gakira Micro Hydropower in Nyeri county, Mathira town, is a private hydro-powered 

mini-grid with a capacity of 600 kW. 

 

• Overview of mini-grids in Rwanda 

According to Rwanda Energy Group (REG) the number of households accessing electricity 

has increased from 10% in 2010 to 73% as of May 2022 with the target of being 100% 

electrified by 2024. Some areas especially those located in Kigali city have currently the 

highest rate with 99% while the lowest rate is above 50%. Rwanda 

topography/mountainous nature is a hindrance to electricity access with respect to national 

grid extensions. To overcome this geographic limitation there is an increasing need for 

mini-grids development. According to the National electrification plan revision of 2021, the 

national grid is expected to contribute with 89.9% and with the remaining 10.1% coming 

from off-grid and mini-grid systems (Table 1). 

 

Table 1 - Electricity plan by 2024 (National Electricity plan 2021). 
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By the end of 2019, mini-grids connected 3 236 households across Rwanda, with 84 mini-

grids installed with a total capacity of around 250 kW but managing to produce only 182 

kW. Currently, off-grid systems are operated by private companies, however, considering 

the renewable electricity potential in Rwanda this sector is underutilized. 

Rwanda is generally characterized by the Savannah climate and its geographical location 

endows it with sufficient solar radiation intensity for the deployment solar systems, with 

approximately 5 kWh/m2/day and peak sun hours of approximately 5 hours per day. Solar 

energy is a promising solution to meet the demand for rural households’ electricity services 

in remote locations. As of May 2021, 16% of Rwandan households are accessing electricity 

through off-grid systems, mainly solar photovoltaic systems.  

Rwanda’s hydropower sector showed tremendous progress. Overall installed capacity of 

power is about 221.1 MW, with hydropower contributing approximately 46% of it. This was 

achieved by involving private investors in the energy sector as Independent Power 

Producers (IPPs). 

Briefly, Rwanda possesses a conductive legal and regulatory environment for private 

investors to invest in renewable energy. Currently, the elaboration and development of 20 

green mini-grid feasibility studies and roll out plans are being carried out and will be handed 

over to the private sector to increase the private sector contribution in energy generation. 

Government of Rwanda (GoR) will lease out these sites to private investors to better 

operate, maintain and connect them to the off-grid. 

For the SETaDiSMA study, the 8 mini-grids will be studied in Rwanda, being the first 

selection: "Rutenderi AC Solar Mini-grid"; Rushonga AC Solar Mini-grid; Mudasomwa PHPP; 

Banda AC Solar Mini-grid; Rutobotobo and Rwamacumu AC solar Mini-grid; Nyankorogoma 

PHPP Ltd; Nyakiramba PHPP; Nyakiramba PHPP. 

Aiming to support the SETaDiSMA activities, this report is structured as follows: Section 2 

presents a review of existing databases for estimating the wind and solar resource 

assessment and provides the results obtained to identify the most adequate database for 

the different renewable technologies; Section 3 provides also a literature review to identify 

the most common techniques for estimate the rural electricity demand. Two different 

methodologies for demand estimation are proposed and validated against data collected 

from the studied mini-grids; and, finally, in section 4, some final remarks are provided.  
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2. Resource assessment  

Resource assessment is a key step in the design process of hybrid mini-grids in rural areas. 

It consists in the evaluation of the availability (both time-wise and energy-wise) of energy 

resources at a given location. It can be performed by means of direct ground 

measurements, however, this approach may not always be suitable and/or feasible 

worldwide. Due to seasonal and multi-annual variability of renewable energy sources such 

as solar and wind, resource assessment requires long-term data. Hence the need of 

exploiting meteorological datasets, from which data related to solar irradiance, 

temperature and wind speed may be derived and employed to evaluate the energy 

production potential of a technology for a given location. 

The resource assessment for renewable energy (RE) technologies entails the 

characterization of the primary resource of these technologies (wind speed in the case of 

wind power and solar irradiance in the case of solar power), which is available for energy 

conversion at a specific location or region over a period of interest. In the case of the 

SETaDiSMA project, the resource assessment will support the activities of renewable 

energy sources integration into mini-grids to increase the share of solar and wind power 

into this type of system, as well as to allow its decarbonization.  

For solar energy applications, the focus will be on the different components of the solar 

irradiance relevant to the solar sector (Sengupta, Habte, Wilbert, Gueymard, & Remund, 

2021):  

• Global horizontal irradiance (GHI): the power density of the solar radiation received 

on a horizontal surface. This component is the sum of the direct and diffuse 

components of solar radiation. 

• Direct (or beam) normal irradiance (DNI): the power density of solar radiation 

incident on a surface perpendicular to the sun’s rays emanating from the solar disk 

and the circumsolar region.   

• Diffuse horizontal irradiance (DHI): the power density of solar radiation scattered 

and reflected by the air, clouds and other particles in the atmosphere, incident on 

a horizontal surface. 

• Global tilted irradiance (GTI): the power density of solar radiation, including 

radiation emanating from the solar disk, the circumsolar region, the scattered 

radiation and the reflected radiation incident on a tilted surface.  

In Figure 7 a schematic representation of the relevant components of solar global 

irradiance is provided.  

In the case of wind power, the resource assessment focuses on the wind speed and 

direction due to the cubic dependency of the generated power from this parameter 

(equation 1). The wind direction is also included in the description of the existing databases 

since this information is crucial for optimizing the wind turbine layouts in wind parks. 

P =  
1

2
ρACpv3 

(1) 

In equation (1), P is wind power, ρ is the air density, A is the rotor area of a wind turbine, 

Cp is the power coefficient and v is the wind speed. In addition, some databases already 

provide the resource data as power (or energy) without being necessary to apply any 

conversion from the primary resource data. These databases were also included in this 

report. 
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Figure 7 - Global solar radiation components: direct (or beam), diffuse, and 

reflected radiation incident on a tilted solar photovoltaic (PV) panel (image 

extracted from (Doddy Clarke & Sweeney, 2022)). 

2.1 Existing databases for RE (wind and solar) resource estimation 

This section presents and briefly characterizes the main open-access databases available 

for wind and solar resource estimation. Other relevant databases, with access under data 

purchase or paid subscription, can be found in existing literature such as (Sengupta et al., 

2021). Some well-known open-access data platforms, such as the Global Wind Atlas 

(available at https://globalwindatlas.info) or the Global Solar Atlas (available at 

https://globalsolaratlas.info), are not included in this document since the temporal 

resolution of the data is not suitable for mini-grid applications beyond simplified pre-

feasibility studies. Other tasks, e.g. the mini-grid design, require dynamical studies which 

demand data with short time intervals (one hour or less). 

2.1.1 Ground measured datasets 

The number of ground stations available with measured data is very important for the 

resource assessment since they provide data with high degree of accuracy and high 

temporal resolution. However, it has high maintenance requirements and its spatial 

resolution is very limited, since the data is only representative for the station location. 

Ground measured data is also required for validation of reanalysis or satellite derived 

datasets (even if the available data is only daily or monthly averages). 

This type of dataset consists of data collected for a specific location using ground stations. 

Pyrheliometers and pyranometers are the two most common types of radiometers used to 

measure solar irradiance. In the case of wind power, anemometers and wind vanes are the 

types of sensors used to collect wind speed and direction data, respectively. For some 

specific cases/applications, a LiDAR (Light Detection And Ranging) can also be used. This 

type of system enables to infer the vertical wind speed and direction profiles from 10 

meters up to 500 meters above ground level. The installation and maintenance of these 

types of equipment are quite expensive and therefore, typically, the time series for 

characterization of the resource are of short duration (except for climatological stations of 

meteorological institutes/airports). 
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A special care should be taken when using measured data since not all databases perform 

data quality assessments of their records. Several methodologies for quality control of solar 

irradiance and wind measurement data are available in the literature (see for example 

(Brower, Bailey, Doane, & Eberhard, 2012; Marques, Páscoa, Carvalho, & Cardoso, 2020; 

Sengupta et al., 2021). 

 

Figure 8 - Sensors used for solar irradiance measurements 

 left top - pyranometer for global irradiance measurements; left bottom - two-

axis tracked pyrheliometer for direct normal irradiance measurements; and 

right - pyranometer with shading ball for diffuse irradiance measurements 

(Saad, M. Amen, Refaat, & Morad, 2012). 

 

● World Radiation Monitoring Center - Baseline Surface Radiation Network  

The Baseline Surface Radiation Network (BSRN) provides high quality observations for 

short and long-wave surface radiation fluxes. BSRN observations have a global spatial 

coverage, coming from a set of ground stations (49 by the end of 2021) located across the 

world in different climatic zones, Figure 9. Three of these stations are located in the African 

continent: Tamanrasset in Algeria; Gobabeb in Namibia; De Aar in South Africa. Date 

coverage varies from station to station, starting from 1992 till the present date. The 

number and type of measurements vary by station, however, in all cases, the basic 

irradiance parameters are given, including GHI, DNI and GHI with temporal resolution of 

1 minute (3 minutes resolution for stations before 2009). The data acquired through the 

BSRN is managed by the World Radiation Monitoring Center (WRMC) and can be accessed 

online at https://bsrn.awi.de. 
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 Figure 9 - Location of the BSRN stations (December 2021). Source: 

https://bsrn.awi.de 

● World Meteorological Organization – World Radiation Data Centre 

Since its inception in 1964, the World Radiation Data Centre (WRDC), an initiative under 

the scope of the World Meteorological Organization, collects, archives and publishes 

radiometric data for several meteorological stations, having a global spatial coverage, 

Figure 10. The WRDC currently processes and publishes solar radiation data collected by 

more than 500 stations across 56 countries and has a historical archive covering more than 

1200 stations4. Some of these stations are located in African countries5 and from those, 

very few are currently feeding data to this archive – in the latest reports available covering 

a full year (2020) only an Algerian station (Tamanrasset) can be found. Considering the 

last five years, only in 2017 is possible to find other active stations located in an African 

country (in Egypt and Morocco). Data coverage varies from year to year and from station 

to station, being available from 1964 onwards (notice there is an approximately one year 

gap between the current date and the latest date available in the WRDC archive). The 

 
4 Further details available at: https://community.wmo.int/world-radiation-data-centre    
 
5 Covering less than 60% of the African countries: Algeria, Angola, Burkina Faso, Cape Verde, Central 

African Republic, Djibouti, Egypt, Ethiopia, Gambia, Ghana, Guinea-Bissau, Kenya, Madagascar, Mali, 
Morocco, Mozambique, Namibia, Niger, Nigeria, Republic of South Africa, S. Tomé and Príncipe, 
Senegal, Sudan, Tanzania, Tunisia, Uganda, Zaire, Zambia and Zimbabwe. 
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number and type of measurements vary by station, presenting global irradiation data for 

all stations and diffuse irradiation for some of them6. The data is presented as daily and 

monthly totals. Monthly means of hourly totals are also available for some of the stations. 

WRDC data archives can be accessed online at http://wrdc.mgo.rssi.ru. 

 

Figure 10 - Location of the stations with data present in the WRDC archives. 

Source: http://wrdc.mgo.rssi.ru/wrdc_en_new.htm   

 

● Global Energy Balance Archive 

The Global Energy Balance Archive (GEBA) (Wild et al., 2017) is a database curated by 

ETH Zurich that contains surface energy flux measurement data (including global, direct 

and diffuse irradiance) for climatological applications. The 2017 version of the GEBA 

database includes data from 2500 different locations, with 1155 locations having more 

than 3 years of data, Figure 11. Some ground stations included in the GEBA overlap with 

other datasets (e.g., with the BSRN or WRDC). Data from several African locations 

(particularly from sub-Saharan Africa) are included in this database. However, data 

availability varies significantly from year to year and from station to station. Global 

irradiance data is available for 2249 locations, being the oldest measurement from 1919. 

Data for the diffuse and direct irradiance is scarcer, comprising 787 and 109 sites, 

respectively. The data are presented as monthly average values and are available online 

at https://geba.ethz.ch. 

 
6 Other parameters available, although less relevant for the resource assessment, include the 

sunshine duration and radiation balance. 
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Figure 11 – Location of the GEBA measurement stations: 

 red symbols represent locations with at least one monthly entry; yellow 

symbols indicate locations with at least 3 years of data (image extracted from 

(Wild et al., 2017)). 

 

● Southern African Universities Radiometric Network 

The Southern African Universities Radiometric Network (SAURAN) is an initiative of the 

Stellenbosch University and the University of KwaZulu-Natal, established in 2014, that 

gathers 16 African, European and North American partners. SAURAN’s dataset includes 

data for a total of 24 stations located in Botswana, Namibia and South Africa (including 

offline stations), Figure 12. Currently, operational stations are only located in Namibia and 

South Africa. Data availability varies from station to station both in terms of timespan and 

measurands. For example, the earliest data start is from 2010 (Stellenbosch University 

station) while the latest is from 2022 (University of KwaZulu-Natal, Pietermaritzburg 

station). All stations present measured data for direct normal irradiance and global 

horizontal irradiance. Moreover, two stations present data for diffuse horizontal irradiance 

and some stations also present data for other meteorological parameters such as wind 

speed and direction, ambient temperature, relative humidity, etc. The data are presented 

as daily, hourly and minute averages and are available online at https://sauran.ac.za/. 

 
Figure 12 - Location of the SAURAN stations. Source: https://sauran.ac.za/ 
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● Trans-African Hydro-Meteorological Observatory 

The Trans-African Hydro-Meteorological Observatory (TAHMO) initiative aims to develop a 

large scale network of low-cost meteorological stations (up to 20 000) in sub-Saharan 

African countries, gathering European, North American and African partners. Currently, the 

network gathers meteorological data, including solar global irradiance, wind speed and 

wind direction, in 23 African countries, Figure 13. The data timespan varies from station 

to station, and can have high temporal resolution of up to one minute. TAHMO data can be 

accessed at https://tahmo.org/, being available for free for governmental and scientific 

use. However, a fee is incurred for commercial applications. Despite the general interest 

of such initiative, currently, this dataset is of limited use for renewable energy resource 

assessment, since both solar irradiance and wind measurements have not been suitably 

validated against reference measurements in African settings (Schunke et al., 2021). 

 

Figure 13 - Location of the TAHMO stations. Source: https://tahmo.org 

 

● ENERGYDATA.INFO - World Bank Group 

The ENERGYDATA.INFO is an online open data platform (https://energydata.info) 

maintained by the World Bank Group that gathers energy related datasets and analytics, 

including data from solar irradiance and wind measurements at African ground stations, 

Figure 14. This repository has data pertaining to solar irradiance measurements (direct 

normal, global horizontal and diffuse horizontal), wind measurements and other 

meteorological parameters (e.g., ambient temperature, relative humidity, etc.) 

measurements for weather stations located in Benin, Kenya, Liberia, Malawi, Mali, Senegal, 

Tanzania and Zambia. The temporal resolution of this data is 1 minute and its timespan is 

variable, depending on both country and station location, being the earliest data from 

2015. The wind data also varies from station to station in terms of height of measurement, 

with data acquired at 3 m for Kenya, Senegal and Tanzania and 10 m for the others. This 

data repository also has a wind measurement dataset for 17 Ethiopian sites with a 10 

minute resolution for the years 2018 till 2020. 
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Figure 14 – Entrance portal for the ENERGYDATA.INFO platform. Source: 

https://energydata.info 

● Southern African Science Service Centre for Climate Change and Adaptive 

Land Management WeatherNET 

The Southern African Science Service Centre for Climate Change and Adaptive Land 

Management (SASSCAL) WeatherNET is a network of meteorological stations resulting 

from a joint initiative of Angola, Botswana, Namibia, South Africa, Zambia and Germany. 

The corresponding database covers 164 locations across the 5 African countries, being 96 

of the stations offline for more than one month or unavailable on the website, Figure 15. 

These stations collect parameters as global horizontal irradiance and wind speed and 

direction measurements. Other meteorological variables are also provided in this dataset, 

such as ambient temperature, relative humidity, etc. The timespan of the available data 

varies from station to station, being the oldest data from 2009. The data are presented as 

hourly, daily and monthly average values and are available online at 

http://www.sasscalweathernet.org and http://data.sasscal.org. 

 

Figure 15 - Location of the SASSCAL WeatherNet stations. Source: 

http://www.sasscalweathernet.org 

● NCEP ADP Global Surface Observational Weather Data, October 1999 – 

continuing (RDA database) 
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Automated Data Processing (ADP) Global Surface Observational Weather Data (ADPSFC) 

database is based on weather surface reports and it is hosted by the National Centers for 

Environmental Prediction (NCEP). This database covers the entire globe (Figure 16) and 

includes data from i) land stations, e.g., land synoptic stations (fixed and mobile), aviation 

(METAR),  land reports; and ii) marine surface reports from Ships, Drifting and moored 

buoys transmitted through the global telecommunications system (GTS). These stations 

collect parameters such as air temperature, surface pressure, wind direction and speed. 

The timespan of the available data varies from station to station, being the oldest data 

from 1999. The temporal resolution also varies among the stations ranging from 30 

minutes to 3 hours. Although the data are based on stations from meteorological institutes 

and used to support air traffic users should perform rigorous quality control checks before 

using these data since anomalous behaviours (e.g., frozen records) and erroneous values.  

The data from this database are publicly available at: 

https://rda.ucar.edu/datasets/ds461.0 (the website requires registration).  On this 

website, data can be extracted for a specific location7 or for a region of interest8.   

 

Figure 16 - Location with measured data in ADPSFC database from 1999 to 2022 

(blue points).   

 

2.1.2 Meteorological Reanalyses (Numerical model database) 

 
7 See database website for further details and use the following link to identify the ground-based 

stations: https://oscar.wmo.int/surface   
 
8 Within the scope of LEAP-RE project some scripts were developed to obtain the wind speed and 
direction data, apply some basic control and quality check procedures and sort by station. These 
scripts have been made publicly available to allow access to project partners as well as other 
interested parties (see further details at: https://github.com/AntCouto/LEAP-RE). 
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Reanalyses combine meteorological observations and numerical weather prediction models 

to obtain a long-term retrospective estimation of many atmospheric and climatic variables 

such as humidity, clouds composition, temperature, wind and radiation properties in a 

uniform spatial grid with a certain resolution. Regarding wind energy applications, 

reanalyses are the only tool which can provide past wind speed estimates for a long time 

span and at different heights. 

This type of dataset consists of a blend of numerical weather prediction (NWP) models with 

data (gathered from ground stations, buoys, weather balloons, airplanes, etc.) assimilation 

schemes. NWP models parameterize and simulate the atmosphere and its circulation 

mechanisms, ensuring the atmospheric dynamic consistency, while the assimilation 

schemes keep the model close to the real conditions, compensating the deviations 

associated with the model physics.   

Reanalysis data have a relatively low spatial resolution, which is a drawback for accurately 

representing some local effects. Currently, ERA5 from the European Centre for Medium-

Range Weather Forecasts (ECMWF) provides the highest resolution with a spatial grid of 

0.28º x 0.28º (latitude x longitude). The temporal resolution varies according to the 

reanalysis database ranging from one to six hours. The main advantages of using 

reanalysis to perform renewable energy (RE) resource assessment are: uniformed grid 

data for the entire world, temporally consistent without missing data, and long-term period 

(in some cases with more than 30 years). The accuracy of this type of dataset strongly 

relies on the amount and quality of the observations used as initial conditions as well as in 

the development of the physical formulations and parameterization.  

Currently, several reanalysis databases are publicly available providing meteorological data 

(wind speed and direction, cloud cover, etc.). Below a brief description of these databases 

is provided. Most of the data is available in the Netcdf format, which can be read using the 

Panoply software from NASA/GISS9.  It should be mentioned that other examples of 

databases with reanalysis are also available, such as: the NCEP-R1 produced and released 

by National Centre for Environmental Prediction (NCEP), later replaced by NCEP-R2 

(NCEP/DOE, 2000), the ERA-40 or ERA-Interim (Berrisford et al., 2011) produced and 

released by European Centre for Medium-Range Weather Forecasts (ECMWF), the JRA-25 

produced and released by Japanese Meteorological Agency, and CAMS developed by the 

Copernicus Atmosphere Monitoring Service (CAMS). Analysis datasets10 as the NCEP Global 

Forecast System (NCEP-GFS) (National Centers for Environmental Prediction NOAA, U.S. 

Department of Commerce, 2015) and the NCEP Final Analysis (NCEP-FNL)  (National 

Centers for Environmental Prediction NOAA, 2000) are provided with spatial and temporal 

characteristics similar to reanalysis and are also publicly available. However, all the 

previous datasets have coarser temporal resolutions (which vary from three to six hours) 

and are not suitable for the evaluation of the RE resource in the context of mini-grids 

applications. Typically, these reanalyses and analysis datasets are used as initial and 

boundary conditions in limited area/mesoscale models, allowing these models to perform 

simulations with high temporal and spatial resolutions.   

 
9 Software available at: https://www.giss.nasa.gov/tools/panoply  
10 Analysis datasets consist of observations on an irregular grid to produce a representation of the 

atmospheric state over a regular grid. See further details at: 
https://rda.ucar.edu/datasets/ds083.2/docs/Analysis.pdf 
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● ECMWF-ERA5  

ERA5 is the fifth generation of global climate atmospheric reanalysis produced by the 

ECMWF replacing the ERA-15, ERA-40 and more recently the ERA-Interim product widely 

used in several studies. Compared to ERA-Interim, improvements in ERA-5 include, e.g., 

the use of data from global sea ice and sea surface temperature analyzes (HadISST.2), 

reprocessed climate data from ECMWF and implementation of the Radiative Transfer for 

TOVS 11 (RTTOV11) radiative transfer model.   

ERA5 covers the period from January 1950 providing information until near real-time. This 

database provided information with a spatial resolution of 0.25º x 0.25º (approximate 

resolution of 31 kilometers). Atmospheric data are simulated for 37 pressure levels (same 

levels as in ERA-Interim). Surface or single level above ground data is also available, such 

as meridional and longitudinal wind speed at various levels (10, 100 meters), shortwave 

radiation, etc.  The data from this database are publicly available at: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab= 

form or https://rda.ucar.edu/datasets/ds633.0/#!description (both websites require 

registration).   

● NASA-MERRA-2  

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is 

developed by the NASA's Global Modeling and Assimilation Office (GMAO) (Bosilovich et 

al., 2015). MERRA-2 represents the GMAO's commitment to making climate data available 

continuously and in near real-time. This database incorporates observation types not 

available in its predecessor, MERRA, as well as advances made in the assimilation system 

that allow the use of modern observations of hyperspectral and microwave radiation, and 

other data types.  

MERRA-2 provides global atmospheric data from 1980 until near real-time with hourly 

resolution and a spatial resolution of 0.50º x 0.63º (latitude x longitude).  Atmospheric 

data are simulated for 72 pressure levels. Surface or single level above ground data is also 

available, such as meridional and longitudinal wind speed at different levels (10, 50 

meters), cloud cover, incident shortwave radiation, etc. The data are publicly available at: 

https://disc.gsfc.nasa.gov/ (website requires registration).   

● NCEP-CFSv2  

The Climate Forecast System, version 2 (CFSv2) has been developed at NCEP. It is an 

integrally coupled model capable of representing the atmosphere’s interactions as well as 

the interactions of the atmosphere with the land surface, ocean, and sea ice. This version 

became operational at NCEP in March 2011, replacing the previous version - Climate 

Forecast System Reanalysis (CFSRv1) implemented in 2004. At the base of this model are 

the improved versions of the NCEP models, namely, the well-known Global project 

Reanalysis 2 and Global Forecast System (GFS). Thus, compared to previous NCEP 

reanalyses, CFSv2 provides, among others, finer spatial and temporal resolution, an 

improved model, advanced assimilation schemes capable to use satellite data and 

atmosphere-ocean-land-ice coupling (Saha et al., 2010, 2011).  

CFS v2 provides global atmospheric data from 2011 and is initialized four times a day (00, 

06, 12 and 18 UTC). The original spatial resolution is 0.5º x 0.5º. Surface or single level 

above ground data is also available, such as meridional and longitudinal wind speed at 

different levels (10 meters), downward shortwave radiation flux, total cloud cover, etc.  

The data from this database are publicly available at https:// 

rda.ucar.edu/datasets/ds094.1. Data from this database can be obtained in Netcdf or 

comma-separated values (CSV) files. In this website, data are available with hourly 
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resolution and with horizontal resolutions of 0.2º, 0.5º, 1.0º and 2.5º. This hourly 

resolution data can be obtained by combining 1) the analysis time step and the remaining 

5 hours with the forecast results, or 2) all forecast hours from each initialization.  

 

2.1.3 Satellite-based dataset  

This type of dataset can be obtained using meteorological satellites that: 

a) use sensing imagery useful to derive the influence of clouds on solar radiation on 

the Earth's surface or for estimating the wind velocity and direction at cloud level by 

analyzing the positions of a distinguishable cloud/group of clouds between two 

sequential images. In general, for this purpose, geostationary satellites are used. They 

have a high time resolution of 15 to 30 minutes, reasonable spatial resolution (few km) 

and their orbit is nearly 36 000 km away over the equator. They circle the earth at the 

same speed as the earth's rotation, such that they are always above the same location. 

b) use dedicated equipment/sensors such as imager radiometer and vertical sensors. 

The data acquisition process involves interactions between the incident radiation and 

the target of interest (e.g., ocean waves). The energy used in remote sensing is 

electromagnetic radiation, whose most important characteristics are the frequency and 

wavelength of the radiation. Active sensors emit energy and measure the properties of 

the signal that returns to these instruments after being absorbed, reflected or scattered 

across the surface of the imaged target. This intrinsic feature only allows to perform the 

resource assessment for offshore regions using these sensors, which are regions outside 

the scope of the SETaDiSMA activities. For this purpose, polar- orbiting satellites are 

used. They have low time resolution (1-2 images per day) and a global coverage. This 

type of satellite has higher spatial resolution compared to geostationary satellites, 

orbiting at an altitude of near 800 km. 

Currently, several satellite-based databases are publicly available providing mainly data 

for the solar energy sector. Below a brief description of these databases is provided. 

● CAMS Radiation service 

Copernicus Atmosphere Monitoring Service radiation service (CAMS-RAD), is part of the 

Copernicus Programme, an Earth observation programme coordinated and managed by 

the European Commission in partnership with the European Space Agency. CAMS combines 

satellite-based irradiance data with a NWP model to provide optical variables as well as 

solar radiation parameters. It is based in the Heliosat-4 method, integrated into the 

MACC—RAD service (Hoyer-Klick C., Lefèvre, Schroedter-Homscheidt, & Wald, 2015). This 

method is capable to treat separately the clear sky radiation (CAMS McClear method) and 

the effects of clouds (CAMS McCloud method) using images acquired by the Meteosat 

Second Generation (MSG) satellite. In Figure 17, a schematic diagram of the CAMS 

radiation service methodology is depicted. 
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Figure 17 – Schematic diagram of the CAMS radiation service methodology. 

Adapted from (Blanc & Wald, 2015). 

CAMS-RAD provides GHI, DHI, and DNI data from 2005 up to 2 days ago, with resolution 

ranging from 1 min to 1 month. The spatial coverage of this dataset is -66º to 66º (both 

in latitude and longitude) and data can be extracted for a specific location of interest, 

Figure 18. Registration is needed to download the data and each user can perform up to 

100 requests per day. Data are available in CSV and Netcdf format at: https://www.soda-

pro.com/web-services/radiation/cams-radiation-service 

 

Figure 18 - Entrance portal for the CAMS radiation database. Source: 

https://www.soda-pro.com/web-services/radiation/cams-radiation-service 

 

● SARAH-2 

The Surface solar RAdiation data set-Heliosat, Edition 2 (SARAH-2) has been developed by 

the Satellite Application Facility on Climate Monitoring (CM SAF) - a center established by 

the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in 

2000, Figure 19. SARAH-2 data are derived from the observations of the visible channels 

of the Meteosat Visible and Infrared Imager (MVIRI) and the Spinning Enhanced Visible 

and InfraRed Imager (SEVIRI) instruments onboard the MSG satellites. SARAH-2 is 
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produced using the Mesoscale Atmospheric Global Irradiance Code Solar (MAGICSOL) 

method, which is a combination of the well-established Heliosat method (Hammer et al., 

2003) with the SPECMAGIC clear-sky model (Mueller, Behrendt, Hammer, & Kemper, 

2012). The aerosol information used in SARAH-2 is climatological, lacking inter-annual 

variation. 

It contains data from global and direct radiation, sunshine duration and cloud albedo. The 

spatial coverage of this dataset is -66º to 66º (both in latitude and longitude) with a spatial 

resolution of 0.05º ×0.05º. Data are available between 1983 and 2017 as monthly and 

daily means and as 30 minutes instantaneous time resolution. Registration is needed to 

download the data, which are available in Netcdf format at: 

https://wui.cmsaf.eu/safira/action/viewProduktDetails?eid=21832_22008&fid=28  

 

Figure 19 - Entrance portal for the CMSAF database. Source: 

https://www.cmsaf.eu 

● CERES 

The Synoptic Fluxes and Clouds (SYN1deg) is a product based on Clouds and the Earth’s 

Radiant Energy System (CERES) satellite instruments that is being developed by NASA’s 

Earth Observing System program. CERES’s instruments are capable to measure directly 

the emission of thermal infrared radiation to space and the reflected solar radiation across 

all wavelengths between the ultraviolet and infrared (Doelling et al., 2013). SYN1deg is a 

level-3 product, which comprises average data of fluxes and clouds. This product comprises 

information from several sources, namely, the Geostationary Operational Environmental 

Satellite (GOES) and HIMAWARI-8 satellite (Figure 20). 
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Figure 20 - Satellites used in the CERES-SYN1deg database according the 

longitude. Source: https://ceres.larc.nasa.gov/data/general-product-info 

CERES-SYN1deg benefits from the use of different satellites to provide a product that 

covers the entire globe with a spatial resolution of 1º ×1º. This database provides data 

from several parameters such as the top-of-atmosphere and surface radiative fluxes as 

well as fluxes at four atmospheric pressure levels (70, 200, 500, and 850 hPa) with the 

following temporal resolution: monthly hourly, daily, 3-hourly and hourly. Data are 

available since 2000 to date (with a latency of 5 months). A registration is needed to 

download the data, which are available in Netcdf format at: 

https://ceres.larc.nasa.gov/data/#syn1deg-level-3        

 

2.1.4 Web platforms and tools   

Some web platforms and tools provide data considering hybrid solutions (e.g., combining 

satellite and reanalysis data, combining satellite data with interpolation of data from 

ground stations) or even additional processing in relation to the original data source. Below 

a list of these platforms and tools is presented, considering exclusively the ones that 

provide free data for the African continent suitable for mini-grid applications. 

 

 

● NASA POWER  

Prediction Of Worldwide Energy Resources (POWER), developed by NASA, provides solar 

and meteorological data at global scale. Solar data, such as solar irradiance and cloud 

properties, are based on the satellite based products NASA GEWEX (for data from 1984 to 

2001), NASA CERES SYN1deg (2001-few months within real-time) and CERES FLASHFlux 

Version 4A, which guarantees low latency data (about 4 days of near real time). 

Meteorological data like wind speed, wind direction and temperature are instead based 

upon MERRA-2 (from 1979 to few months within real time) and Geostationary Operational 

Environmental Satellite (GOES) 5.12.4, a weather prediction model that allows to obtain 
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data with a latency of 2 days up to near real-time. POWER time-series are available at a 

minimum temporal resolution of 1 hour for the time period 2001- real time, while daily, 

monthly and annual averages are available for the entire temporal coverage. The spatial 

resolution for meteorological and solar parameters is 0.50º x 0.63º (MERRA-2) and 1° lat 

× 1° lon (GEWEX, CERES). Wind speed data can be retrieved at any desired height between 

10 and 300 meters, since MERRA-2 native data at 10 and 50 meters are used to interpolate 

wind speed with a power law for several types of terrains. Data are publicly available at 

https://power.larc.nasa.gov/ in several formats (NetCDF, ASCII, JSON, CSV). 

● National Solar Radiation Database 

The National Solar Radiation Database (NSRDB) is a collaborative effort of several North 

American institutions led by NREL that provides solar irradiance (global horizontal, diffuse 

horizontal and direct normal components, including for clear sky) and meteorological data 

(such as wind speed and direction, ambient temperature, relative humidity, etc.). NSRDB 

data is generated through modelling of multi-channel measurements performed by 

geostationary satellites (see Figure 21). 

The present version of NSRDB provides data for the African continent for the years 2017 

to 2019 with a spatial resolution of 4 km. The user can select up to three different temporal 

resolutions: 15, 30 and 60 minutes data. Data can be retrieved directly from the web 

platform at https:// nsrdb.nrel.gov/ or through an application (see for example 

https://developer.nrel.gov/ docs/solar/nsrdb/nsrdb_data_query). 

 

Figure 21 – Data flow used by NSRDB for solar irradiance calculations. Source: 

https://nsrdb.nrel.gov 

 

● Renewables.ninja 

The Renewables.ninja web application results from a collaborative effort of Stefan 

Pfenninger and Iain Staffell. It uses weather data from the NASA MERRA reanalysis (entire 

globe) and CM-SAF’s SARAH satellite (only cover Europe and North Africa) data and 

converts it to power output data through the Global Solar Energy Estimator model 

(Pfenninger & Staffell, 2016) and the Virtual Wind Farm model (Staffell & Pfenninger, 

2016). This tool has global coverage and generates data with a temporal resolution of one 

hour, providing information regarding solar irradiance (direct and diffuse horizontal 
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components), wind speed, ambient temperature and electric power production11. The 

dataset generated with this tool covers the years 2000 till 2018. Data can be retrieved 

through the web platform at https://www.renewables.ninja (Figure 22). 

 

Figure 22 - Entrance portal for the Renewables.ninja web platform. Source: 

https://www.renewables.ninja 

  

● Photovoltaic Geographical information System 

The Photovoltaic Geographical information System (PVGIS) is a free web application 

developed by the European Commission Joint Research Centre (JRC) that uses satellite 

and reanalysis databases to provide data on solar radiation and photovoltaic energy 

production. The spatial resolution for African locations is approximately 5 km (considering 

the use of the default database for Africa: the PVGIS-SARAH2), Figure 23. Different types 

of datasets can be obtained through PVGIS, including monthly average solar irradiation, 

average daily irradiance (global horizontal, diffuse horizontal and direct normal) and 

ambient temperature profiles for specific months, hourly irradiance (global, diffuse and 

reflected) data. The available data timespan covers the years 2005 till 2020.  PVGIS also 

allows the generation of Typical Meteorological Year (TMY) datasets, which include solar 

irradiance (global horizontal, diffuse horizontal, and direct normal), wind speed and 

direction and ambient temperature, relative humidity, air pressure and downwards infra-

red radiation. Data can be retrieved through the web platform at https:// 

re.jrc.ec.europa.eu/pvg_tools/en. 

 
11 To estimate the electric power production the user needs to input the capacity of the PV system 
or the wind turbine. 
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Figure 23 – Coverage of PVGIS solar radiation databases. Source: https://joint-

research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-

system/getting-started-pvgis/pvgis-user-manual_en 

 

2.2 Observed data  

Collecting observed data is always a crucial step for validating a RE database. Regarding 

observed data within the SETaDiSMA work package, a form was established and distributed 

among the partners to identify data that can be used. Three partners indicated data that 

could be used, but, until the submission of this deliverable, it was not possible to work with 

such data. Nevertheless, if the data identified become available within the SETaDiSMA 

activities timeframe, upcoming deliverables will include a similar analysis as the one 

presented below.  

Although Mozambique does not belong to SETaDiSMA group countries, LNEG had 

authorization to use, exclusively for validation purposes, data from two anemometric masts 

operating in Mozambique territory during the years 2012 to 2013. This observational data 

covers one complete year of data with a 10 minute time resolution, which is very adequate 

for validation of the wind RE databases. Without access to other observational data from 

the partner countries, several public databases described in sections 2.1.1 to 2.1.3 were 

consulted to identify available ground stations with solar or wind data suitable for validation 

and identification of the most adequate RE database for use in SETaDiSMA studies. In 

terms of solar data, only three ground-base stations located in Kenya were identified and 

the validation study of these stations is extensively presented in the Deliverable 10.2 

(Couto et al., 2022) of the PURAMS project, which was also developed within the scope of 

LEAP-RE. Therefore, in section 2.3.2 only the main findings of the solar validation 

procedure are presented.  

In terms of wind studies, the database ADPSFC presents several meteorological stations 

with data for the countries under analyzed in SETaDiSMA, Figure 24. In this figure, the 

local of all identified meteorological stations with wind data is plotted and the wind data 

availability (in %) is highlighted using a color scale. 
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Figure 24 – Public ground-based stations in LEAP-RE countries with wind data 

and their hourly data availability (in %) (except for Mozambique whose data is 

not public).  

Figure 24 shows a great number of observational wind data stations for Algeria. Most of 

these stations have good data availability for a timespan of three years. Data 

measurements were performed at 10 meters height and are provided with a one hour time 

step. For this country, the three stations with data availability above 90% are considered 

to validate the RE databases. 

For Kenya, only a few meteorological stations are available and only two of the identified 

stations have data availability above 80% of the time for a timespan of three years of data 

and time steps of 1 hour.  

For Rwanda only one station is identified but their data availability and data quality are 

very poor to be used in validation studies. Therefore, this station was rejected.  

Apart from the previous countries, wind data from Mozambique was used by LNEG. These 

data were available in the LNEG database and come from two stations with one complete 

year of data with data intervals of 10 min. Both stations operated in the South part of 

Mozambique and have 100% data availability. 

In addition to the data availability, stations were also chosen according to their localization 

in the territories aiming to cover different aspects of the orography and roughness such as 

the mountainous areas, coastal areas or mainland areas. This will elucidate how RE 

databases are adequate to provide wind data under different conditions. The behaviour of 

the wind flow depends strongly on the complexity of the orography and surface roughness 

elements as well as the wind phenomena propagated by atmospheric turbulence and 

stratification of the atmosphere inside the boundary layer. A well description of wind flow 

behaviour is still a challenge in the most up-to-date atmospheric or general circulation 

atmospheric models. Therefore, the outcome of the public RE databases validation can 

infer how the RE databases generated by general atmospheric models are or not effective 

in describing the wind phenomena at the mountainous or coastal or mainland areas which 

are evaluated by this deliverable. 
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2.3 Validation of RE databases with locally measured data 

In this section, the validation results of the RE wind databases according to observed data 

identified in section 2.2 are presented. The validation covers three stations in Algeria, two 

in Kenya and two in Mozambique12. Two main RE databases (section 2.1.2) were used for 

validation: ECMWF-ERA5 and NASA-MERRA2. For the case of the NCEP-CFSv2, due to a 

long maintenance since summer for updating/substitution the main servers of this 

database, extraction was not definitely possible to be done or when was possible, data 

came always with several “NaN” errors or data faults or even data with erroneous values. 

For this reason and at the present time, this database is unsuitable to be used for validation 

under the development of this report.   

The data extraction from the ECMWF-ERA5 was performed for two level heights, 10 m and 

100m while from NASA-MERRA2 data was extracted for 10 m and 50m heights. For the 

case of NASA-MERRA2 the extraction can be bi-linear interpolated spatially to the exact 

location of the station while the ECMWF-ERA5 the extraction is only possible for the nearest 

grid-point close to the location of the observational station. 

The two stations in Mozambique operated at 40 m and 60 m above ground, which is totally 

different from the height of meteorological synoptic stations (10 m). The RE renewable 

databases do not provide data for the 40 m or 60 m heights. Therefore, and for this 

particular case of Mozambique, the validation on the two stations will be performed for the 

height of 40 m above ground (the lowest level available). The wind speed is estimated for 

each record using the following power law equation: 

𝑣2

𝑣1

= (
ℎ2

ℎ1

)
𝛼

 (2) 

where 𝑣2 is the wind speed from RE database level most closely above 40m height being 

ℎ2that level and 𝑣1the velocity most closely below 40m height and ℎ1 that height. The wind 

shear exponent, 𝛼 is given by: 

𝛼 =
ln (

𝑣2

𝑣1
)

ln (
ℎ2

ℎ1
)
 (3) 

For the ECMWF-MERRA5, 𝛼 is given by: 

𝛼 =
ln (

𝑣100𝑚

𝑣10𝑚
)

ln (
100
10

)
 (4) 

while for NASA-MERRA2. 𝛼 is given by: 

 
12 Mozambique does not belong to SETaDiSMA project although is a partner in other LEAP-

RE projects and is geographically located near to countries under analysed in this project. 
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𝛼 =
ln (

𝑣50𝑚

𝑣10𝑚
)

ln (
50
10

)
 (5) 

After obtaining the wind shear exponent of each location, the wind speed data at 10 m of 

each RE database can be used to estimate the value of wind speed at 40 m through the 

power law: 

𝑣40𝑚 = 𝑣10𝑚 (
40

10
)

𝛼

 (6) 

In terms of wind direction, no estimation was done since the wind direction typically does 

not vary significantly with the height. Therefore, it is considered that: in the case of NASA-

MERRA2 wind direction at 40 m height is the same as at the 50 m height level; in the case 

of ECMWF-ERA5 the wind direction at 40 m has the same values as at the level of 10 m. 

The validation process is performed using hourly resolution data for both wind speed and 

wind direction. For the wind speed case, the most common statistical parameters used by 

the wind industry are calculated: the Pearson-Correlation coefficient, the BIAS, the 

absolute deviation and the root mean square error (RMSE). For the wind direction case, 

the absolute deviation and RMSE are computed.  

Several graphs are also presented. They are the most commonly used graphs produced for 

validation purposes by the wind industry, which are the daily average wind speed profile, 

the annual wind speed profile, the wind speed distribution, the scatterplot of the wind 

speeds and the wind rose. 

 

• Procedure for validation of RE databases with local measured data 

The following equations describe the validation parameters used for validation which are, 

the BIAS, the absolute deviation (ADEV) and the RMSE: 

BIAS =
1

n
∑(xm(i) − xo(i))

n

i=1

 (7) 

ADEV =
1

n
∑|xm(i) − xo(i)|

n

i=1

 (8) 

RMSE = √
1

n
∑(xm(i) − xo(i))

2
n

i=1

 (9) 

where n  is the number of data pairs, xm is the modelled value from the RE database and 

xo is the observed/measured data. The Pearson Correlation coefficient is defined according 

to: 

CC =
∑ (xm(i) − xm)n

i=1 ∙ (xo(i) − xo)

√∑ (xm(i) − xm)2n
i=1 ∙ (xo(i) − xo)2

 
(10) 
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with 

xo =
1

n
∑ xo(i)

n

i=1

 (11) 

and 

xm =
1

n
∑ xm(i)

n

i=1

 (12) 

The Pearson correlation coefficient gives real values between -1 and +1. Values near 0 

mean no correlation/values totally in disagreement. Values near +1 means observation 

and RE modelling database are in good agreement over time while near –1 means they 

still are in agreement but in the opposite phase. In the following sub-chapters, the results 

obtained for Algeria, Kenya and Mozambique are presented. 

 

2.3.1 Validation of databases for wind resource assessment   

● Results for Algeria 

Three stations for validation in Algeria are considered. Figure 25 depicts the orography 

map of Algeria and the location of the stations used and their nicknames DAAE; DABS and 

DAUA. All stations have wind data measured at 10 m height with data recorded at 1 hour 

interval and cover the years 2019 to 2021 with data availability greater than 90%.  

 

Figure 25 – Orography map of Algeria. Location of the three observational 

stations accepted for validation. Data availability above 90% covering the years 

2019 to 2021. All stations measured wind at 10m height. 

Station DAAE is located at the northern coast of Algeria within a region of complex 

orography with a long valley (towards southwest to east) surrounded by scarped cliffs. 

Station DABS is located in a less complex terrain but surrounded by high-cliff dunes (almost 

the beginning of the Sahara Desert) and very near to the border of Tunisia. Station DAUA 

is a station located in the middle of Sahara Desert in the mainland country, with no complex 

orography and low roughness. 
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Table 2 to Table 4 show the validation results obtained for each station and RE dataset. 

Figure 26 to Figure 34 depict the mean wind speed daily and monthly profiles, the 

scatterplots of the wind speed and the wind rose and wind speed frequency distribution for 

the stations. 

Table 2 – Validation result of the statistical parameters for station DAAE. 

Station 

DAAE 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.35 -1.31 1.76 2.25 62.2 78.01 

NASA-

MERRA2 
0.37 -1.50 1.76 2.24 70.6 85.35 

 

 

(a)       (b) 

Figure 26 – Wind speed: a) daily and b) monthly profiles for station DAAE and 

respective RE databases. Validation at 10 m height.  

 

 

(a)       (b) 

Figure 27 – Wind speed scatterplots observed vs; a) records ECMWF-ERA5 

and b) NASA-MERRA2 for DAAE station. Validation at 10 m height. 
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(a)       (b) 

Figure 28 – a) Wind rose and b) wind speed frequency distribution plot for 

DAAE station and the RE Databases. Validation at 10 m height. 

 

Table 3 – Validation result of the statistical parameters for station DABS. 

Station 

DABS 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.71 -1.11 1.37 1.76 57.19 73.09 

NASA-

MERRA2 
0.59 0.48 1.48 1.92 63.93 81.17 

 

 

 

(a)       (b) 

Figure 29 – Mean wind Daily (a) and Monthly (b) profile obtained for station 

DABS and respective RE databases. Validation at 10 m height. 
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(a)       (b) 

Figure 30 – Scatterplots between wind speed records over time between DABS 

station and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 10 m height. 

 

 

(a)       (b) 

Figure 31 – Wind Rose (a) and Wind speed frequency distribution plot (b) from 

DABS station and RE Databases. Validation at 10 m height. 

 

 

Table 4 – Validation Result of the statistical parameters for station DAUA. 

Station 

DAUA 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.72 -0.76 1.31 1.75 26.84 40.02 

NASA-

MERRA2 
0.61 -0.88 1.49 1.95 35.28 48.80 
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(a)       (b) 

Figure 32 – Mean wind Daily (a) and Monthly (b) profile obtained for station 

DAUA and respective RE databases. Validation at 10 m height. 

 

 

(a)       (b) 

Figure 33 – Scatterplots between wind speed records over time between DAUA 

station and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 10 m height. 

 

 

(a)       (b) 

Figure 34 – Wind Rose (a) and Wind speed frequency distribution plot (b) from 

DAUA station and RE Databases. Validation at 10 m height. 

Previous results show that both RE databases present poor performance for representing 

the wind flow for DAAE station - a coastal area surrounded by scarp cliffs. This means both 

databases may have an inappropriate spatial resolution to represent an orography of this 
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kind. Therefore, results suggest that both RE databases are poorly recommended to 

provide wind estimates for this kind of locals. A high-resolution RE database capable to 

represent more efficiently this type of terrain is desirable to provide more realistic wind 

data. 

In the case of station DABS, the ECMWF-ERA5 shows a good correlation for wind speed 

but underestimates it (bias equal to -1.11 m/s). On the contrary, NASA-MERRA2 has less 

correlation but gives little overestimation of the wind speed as revealed by the mean wind 

speed monthly profile and wind speed frequency distribution. In terms of wind direction, 

both RE databases show poor performance. Both RE databases were capable to describe 

the mean daily profile. Although this station is located in a less complex terrain but 

surrounded by high-cliff dunes – the beginning of the Sahara Desert – probably with 

moving dunes making the wind direction less accurate, both databases may be equally 

used although the ECMWF-ERA5 gave better correlation and less wind speed deviation 

values despite of underestimate the wind speed.   

For the case of DAUA station, in the middle of the desert with low complex terrain and low 

complex roughness both databases behave well in terms of deviations and wind rose.  

● Results for Kenya 

For Kenya two stations are used. Figure 35 depicts the orography map of Kenya and the 

location of the stations with their nicknames HKJK and HKMO. These two stations recorded 

wind data at 10 m height with 1 hour interval covering the years 2019 to 2021 with data 

availability above 85%.  

 

Figure 35 – Orography map of Kenya. Location of the three observational 

stations used for validation with data availability above 90% covering the years 

2019 to 2021. All stations measured wind at 10 m height. 

 



D13.2 - Characterization of the electricity needs and resource assessment methodologies 

44 
 This project has received funding from the European Union’s Horizon 2020 

Research and Innovation Program under Grant Agreement 963530. 

Station HKJK is located in a planar zone with low complex orography and low roughness 

but with high altimetry, around 1700m above sea level, while station HKMO is a coastal 

station with low orography and roughness in the surrounding of the location.  

Table 5 and Table 6 show the validation results obtained in each station for the different 

RE datasets. Figure 36 to Figure 41 depict the mean wind daily and monthly speed profiles, 

the scatterplots of the wind speed and the wind rose, and wind speed frequency distribution 

graph through stations. 

Table 5 – Validation Result of the statistical parameters for station HKJK. 

Station 

HKJK 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.70 -1.92 1.98 2.30 39.48 57.75 

NASA-

MERRA2 
0.55 0.06 1.30 1.63 43.15 59.12 

 

 

(a)       (b) 

Figure 36 – Mean wind Daily (a) and Monthly (b) profile obtained for station 

HKJK and respective RE databases. Validation at 10 m height. 

 

 

(a)       (b) 

Figure 37 – Scatterplots between wind speed records over time between HKJK 

station and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 10 m height. 
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(a) 

 

(b) 

Figure 38 – Wind Rose (a) and Wind speed frequency distribution plot (b) 

from HKJK station and RE Databases. Validation at 10 m height 

 

Table 6 – Validation result of the statistical parameters for station HKMO. 

Station 

HKMO 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.64 -0.49 1.03 1.34 21.92 31.64 

NASA-

MERRA2 
0.66 0.72 1.28 1.61 29.57 42.28 

 

 

(a)       (b) 

Figure 39 – Mean wind Daily (a) and Monthly (b) profile obtained for station 

HKMO and respective RE databases. Validation at 10 m height. 
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(a)       (b) 

Figure 40 – Scatterplots between wind speed records over time between HKMO 

station and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 10 m height. 

 

 
(a) 

 
 

(b) 

Figure 41 – Wind Rose (a) and Wind speed frequency distribution plot (b) 

from HKMO station and RE databases. Validation at 10 m height. 

 

Results for HKJK station show a good agreement in the correlation for ECMWF-ERA5 but 

with wind speeds underestimated (almost 2 m/s). On the other hand, NASA-MERRA2 

revealed a weaker correlation when compared with ECMWF-ERA5, but the mean wind 

speed is better represented as seen by the mean wind speed monthly profile and frequency 

distribution..  

ECMWF-ERA5 present a better estimation of the wind rose with less deviation in direction 

values when compared with NASA-MERRA2. For this particular case, and as an overview 

result, both databases may be suitable as a first approach to represent the wind. 

Nevertheless, the NASA-MERRA2 may be better suitable to represent the wind in this type 

of terrain and roughness.   

Validation results using data from the HKMO station show that both databases have similar 

correlation, although in terms of wind and direction deviations the ECMWF-ERA5 has better 

performance than NASA-MERRA2. In fact, NASA-MERRA2 overestimates the wind speed as 

seen in the mean daily and monthly wind profiles as well as in the wind speed distribution 

values. Also, the wind rose is better represented by the ECMWF-ERA5 rather than NASA-

MERRA2. For this particular case, a coastal area with low complex orography and low 

roughness the ECMWF-ERA5 has better performance than NASA-MERRA2. 
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● Results for Mozambique 

For the Mozambique case, two non-public ground-based stations are used. These stations 

can be used for validation purposes by LNEG. These two stations recorded data at two 

levels, 40 m and 60 m height for the years 2012 to 2013 with one complete year of data 

at 10 minutes interval. Figure 42 depicts the orography map of Mozambique and the 

location of the stations with their name corresponding to the closer town. Data availability 

is 100% for both stations. The validation results are performed for 40 m height selecting 

all records multiple of 1 hour to be compatible with the RE databases. 

 

Figure 42 – Orography map of Mozambique. Location of the two observational 

stations used for validation. Data availability is 100% covering years 2012 to 

2013. All stations measured wind speed and direction at 40 m height. 

 

Both stations are located in the most Southern region of Mozambique. The station in 

Namaacha area is located in a zone with irregular middle-complex orography with medium 

roughness while the station in Estatuene region is placed in a flat area with low complex 

orography but with medium roughness. 

Table 7 and Table 8 show the validation results obtained for each station using the two RE 

datasets under analysis. Figure 43 to Figure 48 depict the mean wind daily and monthly 

profiles, the scatterplots of the wind speed and the wind rose and wind speed frequency 

distribution graph through stations. 
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Table 7 – Validation Result of the statistical parameters for station in 

Namaacha. 

Station 

Namaacha 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.66 -3.38 3.52 4.15 37.38 51.15 

NASA-

MERRA2 
0.58 -2.01 2.66 3.32 33.66 46.97 

 

 

(a)       (b) 

Figure 43 – Mean wind Daily (a) and Monthly (b) profile obtained for station in 

Namaacha and respective RE databases. Validation at 40 m height. 

 

 

(a)       (b) 

Figure 44 – Scatterplots between wind speed records over time between station 

in Namaacha and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 40 m 

height. 
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(a)       (b) 

Figure 45 – Wind Rose (a) and Wind speed frequency distribution plot (b) 

from station in Namaacha and RE Databases. Validation at 40 m height. 

 

Table 8 – Validation Result of the statistical parameters for station in Estatuene. 

Station 

Estatuene 
Correlation 

BIAS  

[m/s]  

Absolute 

Deviation 

[m/s] 

RMSE 

[m/s] 

Absolute 

Deviation 

[°] 

RMSE 

[°] 

ECMWF-

ERA5 
0.72 -1.71 2.05 2.59 34.95 46.49 

NASA-

MERRA2 
0.68 -0.30 1.60 2.11 30.74 43.66 

 

 

 

(a)       (b) 

Figure 46 – Mean wind Daily (a) and Monthly (b) profile obtained for station in 

Estatuene and respective RE databases. Validation at 40 m height. 
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(a)       (b) 

Figure 47– Scatterplots between wind speed records over time between station 

in Estatuene and ECMWF-ERA5 (a) and NASA-MERRA2 (b). Validation at 40 m 

height. 

 

 

(a)       (b) 

Figure 48– Wind Rose (a) and Wind speed frequency distribution plot (b) from 

station in Estatuene and RE Databases. Validation at 40 m height. 

 

The analysis for Namaacha station data shows that both RE databases may be less effective 

in representing the wind for this kind of middle/complex orography terrains with medium 

roughness. Both RE databases show different patterns. Although NASA-MERRA2 show less 

correlation in wind speed than ECMWF-ERA5, it gave better results in deviation values both 

for wind speed and wind direction. It is visible that NASA-MERRA2 wind speed monthly 

profile and frequency distribution are quite similar to observation rather than the ECMWF-

ERA5 which clearly differs from the station. Other evidence is ECMWF-ERA5 underestimate 

clearly the wind values. As a general overview of this local, taking into account the 

orography and roughness conditions as well the wind rose, it is desirable a high-resolution 

database capable of representing better the orography to potentially provide better results. 

However, the results achieved for this station revealed that the NASA-MERRA2 has better 

performance than ECMWF-ERA5. 

For Estatuene station both RE databases are capable, in a first approach, to represent the 

wind speed for a low complex terrain with medium roughness. It is clearly visible that 

ECMWF-ERA5 has better correlation that NASA-MERRA2 but as similar to Namaacha 

station. The statistical parameters revealed that NASA-MERRA2 has much less deviations 
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in both wind speed and direction rather than ECMWF-ERA5. In fact, NASA-MERRA2 

represented quite satisfactory the mean monthly profile and the wind speed frequency 

distribution. Again, ECMWF-ERA5 underestimated quite high wind speed values. As a 

general overview for this local with low complex orography but with medium roughness, 

NASA-MERRA2 had better performance than ECMWF-ERA5. 

● Overall validation results 

As a summary of the validation results for the evaluated countries – Algeria, Kenya and 

Mozambique, it was clear that the RE database quality depends on the terrain and 

roughness types. This conclusion was expected since both RE databases have limited 

resolution to represent quite well the wind behaviour over complex terrain or locals with 

medium roughness. Therefore, ideally, locals dominated by complex orography or 

medium/high roughness should be better represented by high-resolution spatial RE 

databases instead of using the RE databases analysed – ECMWF-ERA5 and NASA-MERRA2 

that showed poor results over this type of terrain and roughness. 

For low complex terrains or low roughness both RE databases have good quality in wind 

speed and direction. However, if there is a mixture of low complex terrain with medium 

roughness, both RE databases can still be used as a first approach for inquiring the wind 

speed and direction on each territory, but for this kind of mixing terrain/roughness, NASA-

MERRA2 evidenced slightly better performance in comparison with ECMWF-ERA5. 

In terms of observations, no data was provided from SETaDiSMA partners. Therefore, the 

majority of the stations used were merely publicly synoptical meteorological stations 

measuring the wind at 10 m height. Although data seemed to be with good quality there 

is no information about the presence of obstacles in the nearby stations that might affect 

the wind data used for the validations presented above.  

 

2.3.2 Validation of databases for solar resource assessment   

The identification of databases publicly available for solar resource assessment as well as 

their validation for use in solar resource assessment was performed within the scope of 

the LEAP-RE work package Rural African Markets using Standalone Solar (WP10 - PURAMS) 

and is presented in the report D10.2 - Standalone solar cooking appliance design metrics 

(Couto et al., 2022). Since this deliverable no further ground-based data was retrieved for 

the reference countries. In this sense, to avoid overlap information already provided, only 

a brief outline of the main results identified in D10.2 is provided below.  

Three ground-based stations with adequate data for validation purposes were identified for 

the countries under study in SETaDiSMA and PURAMS work packages. These ground-based 

stations are in Kenya, located at: Homa-Bay, Laisamis and Narok (Figure 49). All data from 

these stations are provided by the World Bank Group database and GeoSun Africa 

Company. Therefore, the validation assessment was restricted to this country. The ground-

based stations are equipped with two thermopile pyranometers located at 2 m height above 

ground level with sensors from Delta-T and Hukseflux manufacturers. Measured solar data 

comprises DHI and GHI in W/m² at a time interval of 1 minute, covering the complete 

period between 08 December 2019 to 31 December 2021. The measured data was 

compared with satellite-based databases’ GHI and DHI parameters, namely, the CAMS 

radiation service, PVGIS and POWER.     
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Figure 49 - Location of the ground-based stations in Kenya with solar data used 

for validation purposes overlayed with the terrain map of Kenya. 

 

The metrics computed are the same applied in the case of wind power. In Table 9 the main 

basic statistics derived from the validation study between each ground-based station and 

satellite-based databases – CAMS, PVGIS and POWER are provided. It should be noted that 

PVGIS database results were only processed for the ground-based station “Laisamis”. For 

the other stations, PVGIS database returned a time-series of “NaN” values meaning no 

available data or a temporary problem in retrieving data for these locals. In due date of 

this report, PVGIS database kept returning the same behaviour of “NaN” values for GHI for 

the local stations “Homa-Bay” and “Narok”. 

Broadly speaking, results from Table 9 confirm that satellite-based databases have 

capacity to provide solar data for the locals under study with correlation values above 0.96 

for all cases. This high value of correlation means that solar variability is well estimated. 

The maximum bias error, in absolute value, was 5% and the maximum RMSE value was 

22%. These values are in line with the global validation studies of SolarGIS and CAMS 

radiation service for African Countries. The mean daily profiles and monthly daily profiles 

show bias values varying between 1% and 9% except for the PVGIS case that show values 

around 14% - also in accordance with the global validation studies of SolarGIS and CAMS 

radiation service for African Countries. Nevertheless, the validation results for Kenya show 

that all satellite-based databases are good for performing solar resource assessment. The 

results enlighten that the CAMS satellite-based methodology was the one providing the 

highest correlation values with the minimum bias and RMSE values.  

Based on these results, it is proposed to use the CAMS radiation service database to provide 

solar data for the studies under development in LEAP-RE activities in Kenya. 
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Table 9 - Statistical parameters obtained for the three ground station used for 

the solar resource assessment. 

Station Database Correlation  
BIAS 

[%] 

RMSE 

[%] 

BIAS 

Daily 

Profile 

[%] 

BIAS 

Monthly 

Profile 

[%] 

H
o

m
a
-B

a
y
 

CAMS 0.985 3.85 14.47 6.06 3.84 

PVGIS* - - - - - 

POWER 0.961 4.94 22.77 9.11 8.81 

L
a
is

a
m

is
 CAMS 0.990 3.67 11.86 4.90 3.68 

PVGIS 0.977 3.96 17.75 13.30 14.23 

POWER 0.977 -2.02 15.76 1.42 0.17 

N
a
r
o

k
 

CAMS 0.989 4.06 12.41 4.42 4.05 

PVGIS* - - - - - 

POWER 0.976 -5.69 18.36 1.36 -2.76 

* PVGIS database returned a time-series of “NaN” values not allowing to use this station. 
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3. Demand estimation 

It has been highlighted that energy system models play a crucial role in the sizing of micro-

grids for enabling access to energy in rural areas; nonetheless, they are still far from being 

capable of satisfying the specific needs that such a problem inherently brings along. In 

particular, it has been observed the need for considering the problem under a time evolving 

scenario, able to tackle the uncertainties deriving from the new perspective. To this regard 

Balderrama (Balderrama et al., 2019) reports how the poor forecast of load evolution of a 

community in rural Bolivia led to the construction of a mini-grid that only after a few years 

proved to be undersized due to the new energy uses that evolved in the area. In the 

introduction of their work Balderrama et al. report other cases of inaccurate demand 

projections that lead to unexpected situations and wrong mini-grid sizing in the long run. 

In particular in (Ulsrud et al., 2011) Ulsrud et al. show how in rural India, solar mini-grid 

projects experienced an increase in energy demand over time for mainly two reasons: 

users starting to connect more appliances and new connections to the grid were taking 

place, while others were inscribed in a waiting list, which was due to an increase of the 

share of population that became able to afford the connection to the grid after its 

deployment. Diaz et al. in (Díaz et al., 2010) highlight how population growth, higher per-

capita consumption and new connections to the mini-grid led to up to double electricity 

demand in different examples over eight years. Kobayakawa and Kandpal (Kobayakawa & 

Kandpal, 2015) report clearly how a mini-grid in rural India experienced growth in average 

daily demand in two years and a half. Finally Riva et al. (Riva et al., 2019) highlight how 

household electricity consumption is strictly dependent on household income, and as the 

income of the village can benefit from the access to electricity itself triggering a causal loop 

bringing an increase in load demand of the village  as showed by the same author (Riva, 

Tognollo, et al., 2018). 

All these examples highlight the relevance of properly assessing the load demand that the 

future mini-grid will have to satisfy, showing how mid-sized mini-grids bring to rapid failure 

or abandonment of the system. For this reason, proper modelling techniques are required, 

able to link the estimation of the future demand with the specific needs of the community, 

and in turn, the mini-grid sizing tools need to be able to grasp this nuances and size the 

mini-grid accordingly. 

Among numerous tools available for the modelling, sizing and optimisation of off-grid 

energy systems, the most widely adopted is HOMER® (HOMER - Hybrid Renewable and 

Distributed Generation System Design Software, n.d.), a proprietary software capable of 

identifying a set of alternative (from the least-cost one to any other feasible) micro-grid 

configurations as a result of an enumerative optimisation process. Despite its wide range 

of technological options and features, its closed-source nature does not allow for 

customisability, hindering context-adaptability and the implementation of new features. 

Indeed, as regards the accounting for time-evolving electricity demand profiles, the latest 

release of HOMER® only allows to set a year-by-year series of multipliers to match load 

forecasts; finer load projection analyses are not possible. Furthermore, the load evolving 

mode of HOMER® performs a heuristic optimization, not assuring that the result is a global 

optimum. Similar considerations are valid for other widespread models, such as DER-CAM 

(DER-CAM, n.d.) and iHOGA (IHOGA, n.d.). Both models have been developed in academia 

but not released as open-source software and currently they do not allow time-evolving 

constraints. An open-source tool for micro-grid sizing, based on two-stage stochastic 

optimisation, is proposed by Balderrama et al. (Balderrama et al., 2019), Micro-gridsPy, 

which allows adaptation of the model structure towards context-specific formulation 

requirements depending on the scope of application (Stevanato et al., 2020), but does not 

allow time-evolving constraints nor enable the expansion of the system capacity over time 

in response to a non-linearly time-evolving load demand. 

Hartvingsson et al. (Hartvigsson et al., 2018) try to overcome this limitation by iterating 

DER-CAM with a system-dynamics model of appliances diffusion and a load profile 
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generation model, in an attempt to account for feedbacks between socio-economic 

dynamics and capacity-expansion decisions. Still, the proposed integrated modelling 

approach does not allow including the non-linear load evolution as a direct input to the 

optimisation model. Another attempt at controlling the uncertainty associated with 

boundary conditions evolution over time has been made by Dufo-López et al. (Dufo-López 

et al., 2016), who combine probability density functions of input parameters variations 

with stochastic optimisation. Nonetheless, this approach fails to allow for the explicit 

simulation and the accounting of alternative load evolution patterns. Further examples of 

a variety of tools or academic algorithms for micro-grids optimisation that yet lack features 

for load evolution and capacity expansion modelling can be found in dedicated literature 

reviews (Markovic et al., 2011; Sinha & Chandel, 2014). 

On the other hand, the broader field of energy system modelling has experienced in recent 

years an increasing spread of open-source, customisable energy system models 

(Pfenninger et al., 2018). Some of these, though not originally conceived for application to 

small-scale villages, present valuable features in terms of accounting for time-evolving 

demand and multi-step capacity expansion decisions. For instance, Riva et al. (Riva et al., 

2019) couple a long-term energy demand forecasting approach with the energy system 

optimisation model OSeMOSYS, developed by Howells et al. (Howells et al., 2011), and 

apply the soft-linked model to rural villages in India. The study highlights how the cost-

optimal system design can be significantly influenced by demand variations over time. 

In the end, accounting for load evolution within micro-grids optimisation models is not 

enough. DeCarolis et al. (DeCarolis et al., 2017) collect evidences of experienced 

discrepancies among load forecasts and real load evolutions. As a matter of fact, modelling 

load evolution does not represent a significant improvement to the state-of-the-art if not 

coupled with robust uncertainty management. As pointed out by Pfenninger et al. in 

(Pfenninger et al., 2014), modelling of uncertainties may be classified as one of the current 

main challenges for energy modellers, while Yue et al. (Yue et al., 2018) underline how 

this issue has been poorly addressed or even ignored in the vast majority of the papers 

they reviewed. In the same work, they highlight stochastic programming, modelling to 

generate alternatives, Monte Carlo analysis and robust optimization as the most adopted 

non-deterministic approaches. 

Defining load demand is a complex and multifaceted task that can take on different forms 

and methods depending on the specific context. For example, it is possible to estimate only 

the demand for electricity, or the demand for different energy carriers, such as space 

heating or domestic hot water, with different time resolutions and time horizons. For long 

time horizons, studies focus on the evolution of demand. In fact, it is likely that a successful 

project will push new residential or commercial users to connect or increase the 

attractiveness of new devices (Díaz et al., 2010; Ganguly et al., 2020). 

In general, there are two families of models for estimating current energy demand: 

● Top-down models, which consist of setting a target power and energy level and 

sizing the solution accordingly, are typically adopted in expert-based methods such 

as in (Louie & Dauenhauer, 2016); 

● Bottom-up models, which employ surveys to quantify beneficiary needs and desired 

appliance usage, are usually combined with tools that take into account the 

stochastic variability of habits over the course of the day (such as, for example, 

LoadProGen (Mandelli et al., 2016) or RAMP (Lombardi et al., 2019)). 

Both categories of models need a large amount of high-resolution data: top-down models 

require defining energy consumption bands and identifying the factors that assign these 

bands to different population groups (Daioglou et al., 2012; Ruijven et al., 2011). 
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On the other hand, bottom-up models require a large amount of high-resolution data, since 

their operating logic assumes that the characteristics and habits of the users are known to 

the modeler, who can use them to characterize the load demand of the area or category 

of users. 

The research was conducted in the direction of identifying strategies and methodologies to 

provide reliable inputs for load demand models, ranging from System Dynamics-type 

approaches (Riva, 2019) up to the most recent seminal research involving Artificial 

Intelligence techniques, Machine Learning and GIS for input data generation (Allee et al., 

2021; Dominguez et al., 2021a; Fobi et al., 2021; VIDA, n.d.). 

Despite the considerable research being conducted in this direction, it is still in its infancy 

and the production of input data for load demand models still relies heavily on specific 

interviews and surveys with non-electrified communities, which have proved to be a source 

of unreliable data (Blodgett et al., 2017). 

 

3.1 Literature review and existing tools  

A scientific literature review was conducted with the aim of understanding the factors 

influencing a community's electricity demand, with a focus on demand models to generate 

inputs for energy planning models (EPMs). The objective of the review is to identify a 

comprehensive list of potential electricity demand drivers tested in the literature, to be 

used as a basis for building the appliance ownership database. 

A total of 34 articles, including 5 review papers, were reviewed with special focus to 

developed countries (DCs). 

3.1.1 Reviews on demand estimation   

The review papers were instrumental in understanding the context of demand modeling 

for energy planning. As pointed out by Debnath and Mourshed, most of the current energy 

planning models (EPMs) were created in developed countries, often influenced by 

developed country assumptions (Debnath & Mourshed, 2018). However, municipalities 

have different goals when it comes to assessing energy demand. The challenges ahead are 

greater (e.g. electrification strategies, suppressed demand estimation) and may require ad 

hoc solutions, such as the widespread adoption of decentralized energy systems. These 

differences are mirrored by the EPMs: requiring specific models, adapted to the 

peculiarities of the DCs.  

Research efforts have been made in recent decades to fill this gap. In their review of case 

studies on energy planning in remote areas, Riva et al. (Riva, Tognollo, et al., 2018) have 

proposed a classification in terms of spatial coverage, planning horizon, energy carrier, 

mathematical model of decision criteria and demand sector. Their analysis revealed a 

difference in approaches, depending on the spatial coverage: planning at a regional or 

national level, not usually aimed at the rigorous design of the components of the energy 

system, tends to use aggregated data to evaluate demand and extrapolate its evolution 

over time, adopting a classic top-down approach. When dealing with smaller scales, 

bottom-up models, which are based on field data, are better suited to capturing the socio-

economic and cultural dynamics that can influence local demand. However, scarcity of data 

often limits the applicability of these models and, in particular, forces them to adopt 

simplistic approaches to long-term demand forecasting, such as assuming a fixed demand 

over time. The database developed in this work, which aims to become a source of input 

for community-level EPMs addressing the problem of data scarcity, should therefore 

include, when possible, also information on the evolution of demand over time.  
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Kuster et al. (Kuster et al., 2017), reviewing 113 electric load forecasting models, 

highlighted the problem of high data needs related to the bottom-up approach in 

forecasting long-term electric demand, stating that one of the disadvantages is represented 

by the large amount of data and the lack of information in the long run. The document also 

introduced a classification of the input variables of the models, dividing them into the 

following classes: socio-economic, environmental (linked to meteorological conditions), 

construction and occupation (linked to the characteristics of the dwelling) and time index 

(linked to past question). This last analysis constitutes the starting point for the 

classification used to classify the drivers derived from the publications. Jones et al. (Jones 

et al., 2015) conducted an extensive literature review on studies analyzing electricity 

consumption factors, arriving at the definition of three classes: socio-economic, housing 

and household appliance factors. 

Starting from the classification proposed by Jones et al., the number of classes has been 

extended to include other drivers, extracted from the literature review. The final 

classification of the drivers consists of:  

1. Socio-economic drivers: a broad category that includes information on socio-

economic status for both communities and individual respondents (e.g., population 

density, household income and composition, business revenues).  

2. Dwelling drivers: drivers relating to the characteristics of the households' homes (for 

example, number of rooms).  

3. Appliance Drivers: Appliance-related drivers (e.g., price and power rating).  

4. Past Demand Data: A category that includes modeling techniques that rely on past 

data on electrical demand (for example, past load profiles).  

5. Supply drivers: drivers related to the supply side of the electricity system (for 

example, the number of hours of electricity availability).  

6. Alternative Energy Sources Drivers: Drivers related to the characteristics of energy 

sources other than electricity (for example, the price of kerosene or candles).  

7. Geographic Drivers: Drivers related to the location of the community (for example, 

climate zone and distance from the nearest city).  

8. Cultural drivers: drivers related to culture and habits (for example, religion).  

In the next section, the publications analyzed are divided according to their study objective 

(ownership of household appliances, demand for electricity, load profile, evolution of 

demand over time and other drivers) and each of them is briefly presented to draw insights 

on the methodology and drivers to adopt in this work. At the end of this section, a table 

shows the factor classes (according to the classification described above) which the 

identified drivers fall into. 

3.1.2 Literature with focus on appliance ownership        

Regression has been used in all publications that have developed models to predict 

household appliance ownership. In particular, Rao and Ummel (Rao & Ummel, 2017) 

developed a logistic model and a boosted regression tree, a type of machine learning 

algorithm, to predict the ownership of refrigerators, washing machines and televisions. For 

each model, the authors evaluated two sets of covariates: a sparse set, including only 

income and level of urbanization, and a diverse set, including socio-economic and cultural 

factors. They concluded that the difference in the input variable groups had a greater 

impact on the prediction accuracy than the difference between the models. Kurata et al. 
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(Kurata et al., 2018) focused on predicting solar home system (SHS) possession, using 

data from field surveys conducted in Bangladesh. They did this by applying an Ordinary 

Least Square (OLS) regression, based on the linear least squares method. By 

differentiating residential from commercial users, they found that the latter method is more 

sensitive to energy costs. The same type of model was employed by Richmond and 

Urpelainen (Richmond & Urpelainen, 2019) on data from 5000 Indian households. The 

study evaluated the influence of time since electrification on three types of variables: 

ownership of individual appliances, level of ownership (using a level-based breakdown of 

appliances developed within the study), and number of appliances owned by type. Ordinary 

least squares (OLS) models were developed to estimate the first two types, while a Poisson 

model was used for the number of household appliances. The results were characterized 

by a positive effect of the time variable on all three types of output, thus highlighting the 

importance of considering the time dynamics in sizing an electrical system.  

A survey of home appliances conducted in western Kenya was used by Lee et al. (Lee et 

al., 2016) to study the relationship between household connection status (national grid, 

SHS, not connected) and home appliance ownership levels. SHS was found to have no 

significant impact on ownership of most of the household appliances studied, with the 

exception of chargers and televisions. However, SHS users were of higher socioeconomic 

status than households that relied on kerosene or had no electricity at all. Therefore, SHS 

systems should be seen as a vital step on the energy ladder, which ultimately enables 

users to achieve better electricity supplies and higher levels of appliance ownership, thanks 

to the economic development they trigger. 

3.1.3 Literature with focus on electricity demand 

Different approaches to estimating electricity demand have emerged in the literature. Louw 

et al. (Louw et al., 2008) estimated the average demand of two rural villages in South 

Africa: by comparing two sets of survey-based data, they derived a set of heterogeneous 

input variables whose significance in predicting demand was tested using a log-linear 

regression model. The relevance of income as a driving factor led the authors to conclude 

that the use of electricity is a cost-based solution. Regression has also been adopted by 

Azadeh & Faiz (Azadeh & Faiz, 2011), in parallel with an Artificial Neural Network (ANN), 

to estimate the annual electricity consumption of Iranian households. During the validation 

phase, the superiority of the ANN-based model emerged. Another study using linear 

regression to estimate electricity demand was conducted by Dominguez et al. (Dominguez 

et al., 2021b), who studied the factors determining electricity consumption in rural Kenyan 

households, with particular attention to access dynamics. A separate model has been 

developed to estimate the probability of a household experiencing one of the following 

three energy transitions:  

1. From no access to mains electricity  

2. From not having access to the solar home system (SHS)  

3. From SHS to mains electricity  

The transition approach was also reflected in the choice of an additional dummy input 

variable, representing whether the household had access to an SHS before being connected 

to the electricity grid. Blodget et al. (Blodgett et al., 2017) instead used a typical bottom-

up approach based on the survey: the average daily consumption was obtained starting 

from the time windows of possession and use of household appliances declared by the 

interviewees in eight Kenyan communities. The result was then compared with real 

consumption data, collected in the same communities after the electricity was supplied, 

thus highlighting that the estimates based on the survey would have led to an 

overestimation of demand by 330%. The authors concluded that survey-based sizing 

methodologies would lead to unacceptable bias and proposed an alternative proxy 
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approach. By conducting an analysis of variance (ANOVA) test, the authors demonstrated 

that, statistically, consumers from different communities belong to the same sample 

population. Thus, their consumption data could be interchanged, resulting in a much lower 

estimation error than the survey-based approach. The proxy methodology of the work is 

peculiar in that no distance metrics have been adopted to establish the similarities between 

the communities, thus simplifying the analysis and making it closely linked to the 

contingent data studied. The adoption of such metrics could broaden the applicability of 

the approach. Furthermore, as the authors state: “If the datasets are widely available, 

these results suggest that mini-grid developers can use them to better predict consumption 

than the common survey approach”. 

3.1.4 Literature with focus on load profile 

Similarly to Blodgett et al. (Blodgett et al., 2017), in the study by Hartvigsson & Ahlgren 

(Hartvigsson & Ahlgren, 2018), the classic survey-based demand estimation was 

performed with a peculiarity: the interviews were collected in a Tanzanian village it had 

received electrification more than a decade earlier. Therefore customers, over time, had 

established patterns of use of household appliances; however, the usage patterns stated 

during the interviews greatly underestimated the actual load, which was directly measured 

and compared to the survey-based estimate. Although traditional approaches to demand 

estimation, based on bottom-up surveys, usually result in system poorly sized, innovative 

methodologies explored in the scientific literature show promising results. LoadProGen, a 

model developed by Mandelli et al. (Mandelli et al., 2016), consists of a stochastic 

generator of load profiles that starts from the same data pool as traditional approaches, 

i.e. the basket of foreseen appliances and their usage patterns. Thanks to its stochastic 

nature, LoadProGen can capture the high uncertainty associated with local data. The 

Remote-Areas Multi-energy systems load profiles (RAMP) model, developed by Lombardi 

et al. (Lombardi et al., 2019), is based on the same stochastic logic but also includes the 

estimation of other energy uses. RAMP has been validated on data from a Bolivian village, 

showing an improvement in performance compared to LoadProGen. However, both models 

still have the weakness of relying on surveyed data relating to the household appliances 

intended to be purchased once electricity has been supplied to the community. As already 

mentioned, this type of information has always proved unreliable in the past, therefore, 

the coupling of these bottom-up and stochastic load profile generators with models that 

estimate the ownership of appliances starting from verifiable local data could guarantee 

predictions more accurate than the question. RAMP was also adopted by Falchetta et al. 

(Falchetta et al., 2021) as a core component of the M-LED platform, an electricity demand 

estimation tool that collects multi-sector, bottom-up and highly granular data to generate 

local monthly load curves which can then be used to derive the less costly electrification 

strategy for rural communities.  

The work done by Hernandez et al. (Hernández et al., 2014) showed how machine learning 

methods can be applied to the short-term load prediction of a micro-grid. The authors have 

developed a load profile forecasting procedure using as input only the past two years 

consumption data and the consumption calendar (to study the relationships between days 

and between months). Their prediction tool was built in three stages, each applying a 

different machine learning algorithm between a Self-Organizing Map (SOM) neural 

network, a k-means algorithm, and a Multi-Layer Perceptron (MLP) neural network. 

Machine learning was also the focus of a study by Dominguez et al. (Dominguez et al., 

2021a) in which a chain of supervised and unsupervised models was trained to estimate 

the hourly lighting load profiles of rural households in Kenya and Tanzania. Model inputs 

were publicly available data at the household, village and county levels, combined with 

satellite imagery. It should be noted that the source used by the authors to estimate the 

type of lighting devices was also used to build the database which is the focus of this work. 

Retrieving data from the load curves of 11 East African micro-grids over a two-year time 

horizon, Williams and Jaramillo (Williams et al., 2017) sought to identify weekly and 
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monthly seasonal trends in consumption, as well as patterns of long-term growth. No 

universal result has been achieved in this regard, although it has been possible to state an 

increase in demand over time for most systems. Further analysis of customers' payment 

preferences showed that, when left free to choose rate dynamics, customers have a clear 

tendency towards small and frequent payments. Proper modeling of the tariff scheme 

should therefore not neglect the frequency of payments. On a different note, the work of 

Lorenzoni et al. (Lorenzoni et al., 2020) has many aspects in common with this thesis. The 

authors created a database of load profiles from sixty-one mini-grid projects located in 

DCs. A clustering algorithm has been applied to the load curves, identifying a set of 

archetypal profiles; subsequently, an exploratory graphical analysis of the data was 

performed, to highlight the influence of some potential factors on the shape of the load 

profile: for example, it emerged that flat curves tended to be associated with large mini-

grids, utility-owned and with a long operating history, while peak-dominated profiles 

characterized small, privately-owned projects. 

3.1.5 Literature with focus on demand evolution 

In their longitudinal study (Fobi et al., 2018) on the electricity consumption of Kenyan 

residential customers, Fobi et al. have sought to better understand the evolution of 

electricity demand over time, thus helping model developers in what has been identified in 

(Riva, Tognollo, et al., 2018) as the most neglected component of energy planning models. 

Their results showed an overall increase in consumption over time; however, large 

discrepancies in trends between urban and rural households have been highlighted (with 

the former experiencing larger increases), highlighting the need to include urban/rural 

characterization in future studies. To capture the endogenous relationship between socio-

economic variables and electricity demand within a rural Tanzanian community, a System 

Dynamics model was developed and calibrated in Riva and Colombo (Riva & Colombo, 

2020), to then be tested in a subsequent article (Riva, 2020). The model was built on the 

basis of dynamics that were made explicit using causal loop diagrams in a previous model 

conceptualization work (Riva, Ahlborg, et al., 2018): however, the overall dynamics can 

be summarized as a cycle of positive feedback between the electricity supply and different 

characteristics, mainly socio-economic, of the community. 

3.1.6 Other drivers in literature 

Most of the works presented concern more than one topic. A wide variety of models were 

encountered, from regression to clustering and ad hoc modeling. Starting with a critique 

of global energy models, which often operate at too aggregated a level to capture the 

heterogeneity of energy demand across households, van Ruijven et al. constructed a 

bottom-up model to estimate complete household energy uses (Ruijven et al., 2011). 

Among the outputs of the model were the needs for cooking food, water heating and space 

heating, but also the possession of household appliances and the demand for lighting. 

Outputs were linked, through integrated energy functions, to input variables both at the 

household level (e.g., expenditure) and at the community level (e.g., population). The 

initial model was further developed in a work by Daioglou et al. (Daioglou et al., 2012) and 

was applied to five DCs, while the original paper only covered the Indian case. Van 

Ruijven's model was also the starting point for a work by Riva et al. (Riva et al., 2019), in 

which the dimensioning of an energy system for an Indian rural community has been 

comprehensively addressed through the soft connection of three different models. First, 

the evolution of household appliances ownership over 20 years (assumed as the lifetime 

of the equipment) was obtained by adapting the van Ruijven model, using data from field 

surveys. The property was then entered into LoadProGen to obtain the total annual load 

curves for each year of the simulation. Finally, the Open Source Energy Modeling System 

(OSeMOSYS) model (Howells et al., 2011) was used to obtain, through linear optimization, 

the least expensive energy supply mix. A completely different methodology was adopted 

by Fabini et al. (Fabini et al., 2014), who used the k-nearest neighbors regression to predict 

induced ownership, i.e. the expected increase in household appliances ownership in 
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households receiving electricity. Starting from a set of socio-economic characteristics, the 

authors defined multidimensional distance metrics to compare the constituencies of Kenya. 

The metrics were fed into a k-nearest neighbors algorithm to predict property levels in 

non-electrified districts by assessing their proximity to electrified ones. Finally, using the 

typical values of the daily electricity consumption for each appliance, the results of 

ownership were transformed into electricity demand. As the authors state, underpinning 

the entire process was a key assumption: 'Implicit in this approach is the assumption that 

locations that share socioeconomic characteristics will also have similar demand for electric 

services and similar ability to pay for them.' Thus, the authors' methodology can be framed 

in the proxy approach of (Blodgett et al., 2017) extended to consider multidimensional 

distance metrics between electrified and non-electrified communities. Limiting the metrics 

to a set of socio-economic characteristics could, however, lead to a loss of predictive power 

of the appliance ownership estimation model. Further broadening dimensionality, including 

also different types of features, could have a positive impact. Machine learning models 

have also been used by Allee et al. (Allee et al., 2021); their approach can be described as 

a middle ground between the classic survey-based approach and the proxy approach 

described in (Blodgett et al., 2017). The authors argued that although using survey data 

on planned appliance ownership leads to system mid-sizing, other information from field 

collections could be helpful to apply the proxy approach with a more precise rationale, i.e., 

again, using some form of distance metric to feed to an estimation model. Starting from 

this, they developed three different models to predict the electricity demand and the daily 

load profiles of the sites to be electrified: 

1.  An Intercept-only model, which was trained using only consumption data from 

already electrified micro-grids. 

2.  LASSO, a parametric linear machine learning model, integrating also 

information coming from local surveys. 

3.  A Random Forest, a non-parametric tree-based machine learning model, was 

trained on the same dataset of LASSO. 

By demonstrating that the latter two models performed better than Intercept-only, the 

authors demonstrated that field survey campaigns can still be cost-effective for developers. 

In addition, they performed variable significance tests to reduce the amount of information 

to collect, saving time and money. They found that while socio-economic information was 

of relatively low importance, appliance ownership information was identified by both the 

LASSO and Random Forest models as critical to estimating demand. In contrast to the 

choice of previous works to test several explanatory variables, Shibano and Mogi (Shibano 

& Mogi, 2020) chose to analyze the impact of a single driver, creating an income-based 

model to estimate household electricity consumption. The ownership of electrical 

appliances (which was then related to electricity consumption using a Gamma distribution) 

was modeled using a Gompertz curve, the parameters of which were calibrated via 

regression. 

Williams and Jaramillo (Williams et al., 2018) carried out an analysis similar to that of 

(Lorenzoni et al., 2020), while adopting a customer-based rather than a system-based 

point of view. 821 customers were segmented, using a k-means clustering algorithm, in 

terms of normalized average load curves and average daily electricity consumption. 

Through an exploratory graphical analysis of the data, an attempt was made to establish 

a relationship between these variables and the category of customers, i.e., house, 

company, house and company, and public place. Four case studies of rural micro-grids 

with the same installed capacity were compared in Bahaj and James (Bahaj & James, 

2019), both in terms of load profiles and daily electricity demand. In accordance with (Louw 

et al., 2008), they pointed out that the dynamics of electricity consumption are cost-based 

and revolve around the relative difference between consumers' income and the tariff 

amount. The experience of one of the systems has shown how the adoption of an advance 
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payment system has helped to solve the problem of late payments and abandonments, 

increasing consumption. The functioning of a Tanzanian micro-grid was analyzed both in 

the short and long term by Hartvigsson et al. (Hartvigsson et al., 2021). First, load profiles 

were analyzed to determine a variety of performance metrics such as load factor. Second, 

electricity charges (linked to electricity demand through tariffs) over 30 months were used 

to train the regression algorithms. This last phase highlighted a highly seasonal trend in 

consumption, perhaps linked to the fact that the local economy is heavily based on 

agriculture. Furthermore, the load profiles of the companies showed great heterogeneity 

according to the type of company (and therefore the basket of appliances used). The 

commercial connections should therefore not be neglected in the sizing of the system, but 

also their field of activity and their seasonality. Table 10 provides a list of references that 

addresses all the aforementioned drivers. 

 

Table 10 - Classes of drivers identified in literature. 
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2017) 
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(Kurata et 

al., 2018) X X X   X X X 

(Richmond 

et al., 

2020) 
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Literature with focus on Electricity Demand 
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(Blodgett et 
al., 2017) X        
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Literature with focus on Load Profile 

(Hernández 

et al., 

2014) 

      X         



D13.2 - Characterization of the electricity needs and resource assessment methodologies 

63 
 This project has received funding from the European Union’s Horizon 2020 

Research and Innovation Program under Grant Agreement 963530. 

P
u

b
lic

a
tio

n
 

S
o

c
io

-e
c
o

n
o

m
ic

 

D
w

e
llin

g
 

A
p

p
lia

n
c
e
 

P
a
s
t d

e
m

a
n

d
 

S
u

p
p

ly
 

A
lte

r
n

a
tiv

e
 

e
n

e
r
g

y
 s

o
u

r
c
e
s
 

 

G
e
o

g
r
a
p

h
ic

a
l 

 

C
u

ltu
r
a
l 

(Mandelli, 

Merlo, et 
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(Lombardi, 

Balderrama, 
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2019) 
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(Lorenzoni 
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2020) 
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(Dominguez 

et al., 
2021a) 
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(Falchetta 
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Literature with focus on Demand Evolution 
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al., 2018) 
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(Riva & 

Colombo, 

2020) 
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Literature with Multiple Foci 
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(Riva, 

Gardumi, et 

al., 2019) 
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(Shibano & 

Mogi, 2020) 
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(Allee et al., 

2021) 
X X X     X   X 

(Hartvigsso

n et al., 

2021) 

X     X         

Total 

  25 10 14 10 14 9 8 7 

 

The class of socio-economic drivers emerges as the most adopted in the literature 

reviewed, followed by drivers related to the techno-economic parameters of the appliances 

available to users and to the technology that supplies electricity to users. While cultural 

drivers seem to be the least considered, probably due to the complexity of collecting and 

classifying this class of drivers and the engineering background that often led to the 

exclusion of this analysis category from previous works (Sovacool, 2014). 

 In the appliance ownership literature, as well as in the load profile literature, almost all 

classes of drivers are involved in the studies. Furthermore, in the appliance ownership 

group, this comprehensive coverage is also found within the documents, excluding (K. Lee 

et al., 2016). This is a difference from the Load Profile group, where most items revolved 

around a small number of categories. Similarly, the Demand Evolution group papers show 

near-total coverage of factor categories. 

3.1.7 Innovative methodologies for demand estimation 

Kuster et al. (Kuster et al., 2017) reviewed the literature on demand estimation and 

highlighted that regression, neural networks, machine learning and bottom-up 

methodologies represent the major classes of approaches for estimating demand, as 

highlighted in Figure 50. More recent studies have enriched the field and attempted to 

increase accuracy of methodologies, yet relying on the same class of artificial intelligence 

(AI) techniques as mentioned in the figure. However, as recent improvements, it is worth 

mentioning the recent trend of creating data-driven models (Lorenzoni et al., 2020), social-

dynamics based approaches (Riva & Colombo, 2020) and GIS-enabled spatial 

methodologies (Falchetta et al., 2021), which do not fit in the classification by Kuster et 

al. (Kuster et al., 2017). The literature reviewed in the previous sections, instead, generally 

employed regression methodologies, e.g. k-means (Williams et al., 2018), LASSO or 

Random Forest (Blodgett et al., 2017), Neural Network approaches (Dominguez et al., 

2021a), or survey-based bottom-up models (Lombardi et al., 2019). 
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Figure 50 - Methodologies for demand estimation, adapted from (Kuster et al., 

2017). 

 

The major input parameters that load assessment models have used or reported to be 

relevant for energy assessment are reported in Table 11. The table classifies the major 

driver considered in the literature for demand estimation and classifies them by class, in 

agreement with the classes referred in the previous sections. Moreover, it is also reported 

what entity that input quantity is referred to, be them Village (V), Household (H) and 

Appliance (A). These inputs can be used as reference for calibrating surveys for energy 

assessment to be used by demand estimation methods, as reported in Figure 50.  

 

Table 11 - Major driver list to be used for demand estimation studies, grouped 

by type of driver and entity the driver is linked to (V: Village, H: Household and 

A: Appliance). 

Id Driver   name Driver class Entity References 

1 Connection type or fee Supply V 

(Allee et al., 2021, Dominguez et 
al., 2021a, Falchetta et al., 2021, 
Lee et al., 2016, Riva, 2020, Riva 
and Colombo, 2020) 

2 Electricity price Supply H 

(Azadeh and Faiz, 2011, Bahaj and 
James, 2019, Dominguez et al., 

2021b, Riva, 2020, Riva and 
Colombo, 2020) 

3 
Installed power capacity of 

the system 
Supply V, H (Lorenzoni et al., 2020) 

4 Hours of available electricity Supply H 

(Dominguez et al., 2021a, Rao and 

Ummel, 2017, Riva, 2020, Riva and 
Colombo, 2020, Riva et al., 2018) 

5 
Pre-paid/post-paid tariff 
(tariff scheme) 

Supply V, H 
(Bahaj and James, 2019, Lorenzoni 
et al., 2020) 
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Id Driver   name Driver class Entity References 

6 
Tariff type, method or 
frequency 

Supply V, H 
(Lorenzoni et al., 2020, Pinomaa, 
2021, Williams et al., 2018) 

7 
Time passed since the 
electrification 

Supply V, H 
(Fobi et al., 2018, Louw et al., 
2008, Richmond et al., 2020, 
Williams et al., 2017) 

8 
System management 
(business model) 

Supply V (Lorenzoni et al., 2020) 

9 
Number of connections of 
the system 

Supply V (Lorenzoni et al., 2020) 

10 
Prospect of grid access in 
the next year 

Supply V, H (Kurata et al., 2018) 

11 

Share of households by 

energy access (grid, SHS, 
etc.) 

Supply V (Dominguez et al., 2021b) 

12 
Capacity building 
implemented 

Supply V, H 

(Morganti, 2021, Riva, 2020, Riva 

and Colombo, 2020, Riva et al., 
2018) 

13 
Urban/rural location (GPS 
location proxy) 

Socio-
economic 

V 
(Falchetta et al., 2021, Fobi et al., 
2018, Rao and Ummel, 2017) 

14 

Recently affected by a 

natural disaster (GPS 
location proxy) 

Socio-
economic 

V (Kurata et al., 2018) 

15 
Employment (Working 
hours proxy) 

Socio-
economic 

H 
(Fabini et al., 2014, Falchetta et al., 
2021) 

16 
Nighttime lights from 
satellite imagery (GPS 
location proxy) 

Socio-
economic 

V 
(Dominguez et al., 2021a, Falchetta 
et al., 2021) 

17 
Presence of a household 
business (Working hours 
proxy) 

Socio-
economic 

H 
(Dominguez et al., 2021b, Riva, 
2020, Riva and Colombo, 2020, 
Riva et al., 2018) 

18 
Size of business activity in 

terms of employees 

Socio-

economic 
H (Kurata et al., 2018) 

19 Age of household head 
Socio-

economic 
H 

(Allee et al., 2021, Dominguez et 

al., 2021a,b, Kurata et al., 2018, 
Rao and Ummel, 2017) 

20 
Education level of 
household head 

Socio-
economic 

H 
(Allee et al., 2021, Dominguez et 
al., 2021a, Kurata et al., 2018, Rao 
and Ummel, 2017) 

21 Income of the household 
Socio-

economic 
H 

(Allee et al., 2021, Bahaj and 
James, 2019, Falchetta et al., 2021, 
Kurata et al., 2018, Louw et al., 
2008, Rao and Ummel, 2017, Riva 
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Id Driver   name Driver class Entity References 

et al., 2018, Shibano and Mogi, 
2020) 

22 
Number of 
people/adults/youngsters/el
derly in the household 

Socio-
economic 

H 

(Allee et al., 2021, Dominguez et 

al., 2021b, Kurata et al., 2018, 
Louw et al., 2008, Rao and Ummel, 
2017, Richmond et al., 2020, Riva 
et al., 2019) 

23 
Number of working people 
within the household 

Socio-
economic 

H 
(Allee et al., 2021, Fabini et al., 
2014) 

24 
Size of business activity in 

terms of revenues 

Socio-

economic 
H (Kurata et al., 2018) 

25 Age of business activity 
Socio-

economic 
H (Stevanato et al., 2019) 

26 
Number of years the 
household lived in the 

community 

Socio-
economic 

H (Allee et al., 2021) 

27 Population density 
Socio-

economic 
V 

(Daioglou et al., 2012, Dominguez 
et al., 2021a) 

28 
Ratio of females within the 
household 

Socio-
economic 

H (Kurata et al., 2018) 

29 

Ratio of household 

members with high 
education level 

Socio-
economic 

H (Kurata et al., 2018) 

30 
Business hours of micro-
enterprise 

Socio-
economic 

H (Kurata et al., 2018) 

31 Cooking fuel usages 
Socio-

economic 
A (Allee et al., 2021) 

32 
Information on the owner of 
micro-enterprise 

Socio-
economic 

H (Kurata et al., 2018) 

33 
Monthly energy expenditure 
of household 

Socio-
economic 

H (Allee et al., 2021) 

34 
Ownership of a SHS before 

grid connection 

Socio-

economic 
H (Dominguez et al., 2021b) 

35 Access to credit in the past 
Socio-

economic 
H 

(Kurata et al., 2018, Louw et al., 

2008, Riva, 2020, Riva and 
Colombo, 2020, Riva et al., 2018) 

36 Dimension of land owned 
Socio-

economic 
V 

(Falchetta et al., 2021, Kurata et 
al., 2018) 

37 
Monthly household 

expenditure 

Socio-

economic 
H 

(Daioglou et al., 2012, Richmond et 
al., 2020, Riva, 2020, Riva and 

Colombo, 2020, Riva et al., 2018, 
van Ruijven et al., 2011) 
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Id Driver   name Driver class Entity References 

38 Ownership of large livestock 
Socio-

economic 
H (Dominguez et al., 2021a,b) 

39 
Ownership of motorized 
vehicle 

Socio-
economic 

H 
(Allee et al., 2021, Dominguez et 
al., 2021a,b, Rao and Ummel, 
2017) 

40 
Ownership of small 
livestock 

Socio-
economic 

H (Dominguez et al., 2021a,b) 

41 
Presence of street lighting 
in the neighborhood 

Socio-
economic 

V, H (Dominguez et al., 2021a) 

42 
Respondent category 
(Household, business, etc.) 

Socio-
economic 

H 

(Hartvigsson et al., 2021, Lombardi 
et al., 2019, Lorenzoni et al., 2020, 
Mandelli et al., 2016, Williams et 
al., 2018) 

43 
Seasonality of business 
activity 

Socio-
economic 

H (Hartvigsson et al., 2021) 

44 Sex of household’s head 
Socio-

economic 
H 

(Allee et al., 2021, Dominguez et 
al., 2021a,b, Kurata et al., 2018, 
Rao and Ummel, 2017, Richmond et 
al., 2020) 

45 
Size of public service in 
terms of area occupied 

Socio-
economic 

H (Colombelli, 2019, F., 2021) 

46 
Socio-economic status of 
household head 

Socio-
economic 

H 
(Allee et al., 2021, Dominguez et 
al., 2021a,b, Kurata et al., 2018) 

47 Type of business activity 
Socio-

economic 
H 

(Allee et al., 2021, Hartvigsson et 
al., 2021, Lombardi et al., 2019, 
Mandelli et al., 2016) 

48 Type of public service 
Socio-

economic 
H 

(Falchetta et al., 2021, Lombardi et 
al., 2019, Mandelli et al., 2016) 

49 
Monthly electricity 
consumption 

Past-demand 
data 

V, H, A (Morganti, 2021) 

50 
Monthly electricity 
expenditure 

Past-demand 
data 

H (van Ruijven et al., 2011) 

51 Climate zone Geographical V (Lorenzoni et al., 2020) 

52 
Distance from the nearest 
city 

Geographical V 
(Falchetta et al., 2021, Richmond et 
al., 2020) 

53 Altitude Geographical V This deliverable.  

54 
Agriculture-related 
information 

Geographical H (Falchetta et al., 2021) 

55 Floorspace of the dwelling Dwelling H 
(Daioglou et al., 2012, Riva et al., 
2019, van Ruijven et al., 2011) 

56 Number of rooms of the Dwelling H (Allee et al., 2021, Daioglou et al., 
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Id Driver   name Driver class Entity References 

dwelling 2012, Dominguez et al., 2021b, 
Kurata et al., 2018, Louw et al., 
2008, Rao and Ummel, 2017, Riva 
et al., 2019) 

57 
Ownership status of the 
dwelling 

Dwelling H 
(Allee et al., 2021, Rao and Ummel, 
2017) 

58 
Quality of the dwelling 

(roof/wall material, etc.) 
Dwelling H 

(Allee et al., 2021, Dominguez et 
al., 2021a,b, Fabini et al., 2014, 
Rao and Ummel, 2017) 

59 
Marital status of household 

head 
Cultural H 

(Allee et al., 2021, Kurata et al., 

2018) 

60 Religion or Race Cultural V, H 
(Rao and Ummel, 2017, Richmond 
et al., 2020) 

61 
Number of hours studied 
per night by school children 

Cultural H (Allee et al., 2021) 

62 Bedtime and waketime Cultural H (Allee et al., 2021) 

63 
Presence of a smoking 
person within the household 

Cultural H (Kurata et al., 2018) 

64 Price of appliance Appliance A 
(Azadeh and Faiz, 2011, Rao and 
Ummel, 2017) 

65 Affordability of appliance Appliance V, H (Rao and Ummel, 2017) 

66 Planned appliances Appliance H (Allee et al., 2021) 

67 Price of energy sources 
Alternative 

sources 
A 

(Allee et al., 2021, Dominguez et 
al., 2021b, Fabini et al., 2014, 

Kurata et al., 2018, Louw et al., 
2008, Riva and Colombo, 2020, 
Riva et al., 2018) 

68 Main lighting fuel 
Alternative 

sources 
H (Fabini et al., 2014) 

69 Type of main cooking fuel 
Alternative 

sources 
H 

(Allee et al., 2021, Dominguez et 
al., 2021a,b) 

 

3.2 Data Scarcity and load demand estimation 

The context of rural areas of developing countries, to which SETaDiSMA refers to, is 

particularly affected by the issue of data paucity. It is, in general, an extremely complex 

task to retrieve data from the field to estimate the future energy demand of rural 

communities, and there is also a general lack of available tools from the scientific and 

practitioners’ community. The scientific community is well aware of this issue and of the 

relevance of properly estimating load demand given its impact on system sizing and long-

term sustainability. As a result, the studies analyzed in Section 3.1 were developed and 

produced a large numer of proposed methodologies and useful insights for future steps.  
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In fact, bottom-up approaches and models for characterization of load demand in rural 

areas exist (e.g.,: (Lombardi et al., 2019; Mandelli et al., 2016), but they rely on the 

assumption that high resolution data on appliances ownership and usage patterns exist for 

the study area. This is unfortunately often not true in developing countries, as Debnath 

and Mourshed highlight, data paucity is one of the main challenges for energy modelling 

in developing countries (Debnath & Mourshed, 2018). Secondly, often pre-electrification 

studies are used to feed such models, but they proved to be empirically inaccurate, given 

the intrinsic problem in the use of the tool itself, that aims at predicting uses of electricity 

by surveying individuals that never experienced electricity before (Blodgett et al., 2017). 

This document, building on the observed literature, proposes two different approaches that 

can be adopted to estimate the load demand of rural communities of developing countries 

yet to be connected to electricity services, with two different levels of computational and 

data intensity. 

3.2.1 Archetypes of load demand for rural communities 

This chapter proposes a first approach for improving load demand characterization in off-

grid energy planning. It aims at developing a simple but solid methodology, with a 

geographical applicability to the entire Sub-Saharan Africa that proves to be of easy access 

for the entire community of off-grid energy planners, including government planning bodies 

and NGOs. The proposed approach is a set of load archetypes for household, health 

facilities and school categories of users, differentiated by wealth tier, latitude and climate 

zone. The archetypes can be applied for off-grid system planning at local level (e.g.: sizing 

of a single mini-grid), national strategy development (e.g.: prioritization of areas for 

infrastructure development) and regional level (e.g.: Sub Saharan level analysis for policy 

support), and examples of applications at all levels are proposed. 

In order to develop a technique that allows to cover the entire Sub-Saharan Africa (SSA), 

we developed an archetype-based load estimation approach, synthesized in Figure 51, to 

be integrated with mini-grid sizing models.  

  
Figure 51 - Schematic framework of the methodology for the creation of the 

load archetypes for a) the households, b) the health centers and c) the school. 

 

For the Households, (Figure 51a – top), we identify three main drivers of variation of 

demand, namely i) wealth level of the household, ii) latitude of the village and iii) cooling 

days of the area. Each of the three drivers will independently determine a variation in the 

load curve. The same concept was developed in seminal form in (Falchetta et al., 2021), 

and applied to the sole country of Kenya, reaching a satisfying level of coherence of the 

methodology’s outputs with the existing literature.  
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In (Falchetta et al., 2021) only the driver i) wealth level of the household was considered, 

determining a variation in the basket of appliances used by the 5 different categories of 

users. Here we expand the concept in order to cover a broader spectrum of users across 

the entire sub-continent. 

A. Wealth Tier of the household: the users’ categories are divided according to their 

wealth level, and each level is considered to own a different basket of appliances, 

created starting from a systematic review of the literature on electricity use in rural SSA 

(Ciller & Lumbreras, 2020; Dagnachew et al., 2018; Huld et al., 2017; Kotikot et al., 

2018; Zeyringer et al., 2015). The wealthier classes own more energy intensive 

appliances and in larger number, are inspired from but not based on the World Bank’s 

Multi-Tier Framework (ESMAP, 2015). Such parameters are represented with columns 

in Table 12. 

B. Latitude of the village: as the approach needs to be valid in all SSA, villages at 

different latitudes need to be modelled, as the latitude will determine different sunrise 

and sunset hours, this parameter determines a seasonal change in appliances times of 

use. Such parameters are represented with lines in Table 12. 

C. Cooling days of the area: for the same reason as in point ii), different climates can 

be found in different areas of SSA, and the need for cooling in the households will happen 

at different moments of the years. As suggested by Falchetta and Mistry (Falchetta & 

Mistry, 2021) cooling needs will be a key load in the near future of the continent, and 

this parameter determines the seasonality of their use in the households. Such 

parameters are represented by NC (No Cooling Days), AY (All Year Cooling), OM (Cooling 

Days from October to March) and AS (Cooling Days from April to September) in Table 

12. 

Table 12 - Archetypes of load demand developed, combining the three 

dimensions of latitude, wealth level and climate. 

 

 

For the Health Centres, (Figure 51b – center), based on past work (Falchetta et al., 2021), 

we develop 5 different Tiers of Health facilities, from Rural Dispensary (Tier 1) up to Sub-

County Hospital (Tier 5). For the School (Figure 51c – bottom), also based on the same 

previous study (Falchetta et al., 2021), we propose the archetypical load of a rural primary 

school. 

Through the proposed approach we developed 100 (5x5x4) archetypes of household users, 

characterized by different sets of appliances (wealth parameter), seasonal variations in the 
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time of use of the appliances (latitude parameter) and different seasonal use of ambient 

cooling devices (climate zone parameter): 5 Health Facilities archetypical loads based on 

the kind of Health Centre, and 1 archetypical load for a rural primary school. Such user 

classes are then used to feed the bottom-up stochastic load curve generator model RAMP 

(Lombardi, Balderrama, et al., 2019). 

 

3.2.2 Database of observed load demand trends 

Improving on the archetype concept, it is possible to build a database of observed 

consumption patterns in recently electrified communities to better inform the load 

prediction, based on the proximity approach proposed by (Fabini et al., 2014) and 

expanded to the purpose of this research. The database can have the double role of serving 

as data source per se, providing harmonized and reliable data to energy planners and can 

represent the training basis for load demand prediction algorithms.  

The database can be developed correlating the adoption and use of electric appliances in 

households, small businesses and public services in recently electrified areas with a set of 

socioeconomic parameters, geographical and climatic factors, like the ones provided in 

Table 12 of this document. It can serve as informative platform and future reference for 

linking the context of intervention with a set of expected appliances and their patterns of 

use by the different users. The database can furthermore serve as basis for training an 

Algorithm for Load Estimation of non-served areas, taking advantage of the identified 

correlations between drivers of adoption and appliance ownership and use. This will fill the 

gap of the missing input data for bottom-up load estimation tools. 

Following the statement of Blodgett et al. (Blodgett et al., 2017) on the research potential 

that could be offered by large open databases containing information on electrification case 

studies, the first goal of this work was to set-up and structure a first version of such a 

database. To widen its applicability, the database should be constructed by harmonizing 

different data sources, thus allowing for a wide range of comparisons and analyses. 

Notably, the source heterogeneity will allow practitioners to assess the validity of their 

research results among contexts that may differ in terms of spatial scale, type of 

intervention, geographic location, socio-economic and cultural characteristics of the 

studied communities. To be useful, the database should therefore contain a variety of 

information on electrified users from DCs. Its open-access nature, besides, will allow future 

practitioners and developers to enrich it with new data, thus widening its potential. 

The product will have many characteristics in common with the database developed by 

Lorenzoni et al. (Lorenzoni et al., 2020) on micro-grids. However, some key differences 

should be pointed out: 

● Rather than being a system-based tool, the database will be customer-based. In 

this way, even when only uncomplete information about a given community will be 

available, the aggregation of the data with other instances from the database will 

allow performing analyses. Panel surveys collecting only sparse samples from single 

communities will therefore also be included. 

● Following the customer-based approach, a differentiation between types of users 

(household/business/public service) will be present. 

● To widen the scope of the tool, the type of connections analyzed will not be limited 

to micro-grids but will also consider grid-connected and SHS users. 

● The study focus will be different, shifting from load profiles to appliance ownership. 
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● The database will focus on Sub-Saharan Africa, neglecting at this stage other world 

regions. 

The choice of pivoting the database on appliance data (i.e., ownership, number, usage 

patterns), is justified by the fact that they constitute the key information needed for 

bottom-up survey-based modelling approaches. When practitioners and developers have 

tried to assess appliance info through pre-electrifications surveys, the results have 

consistently proven to be unreliable (Blodgett et al., 2017; Hartvigsson & Ahlgren, 2018). 

However, not all the information collected on-field has the same degree of uncertainty: 

e.g., the household size or the number of rooms can be asserted with more certitude than 

the future time windows of usage of an appliance that, at the moment of the survey, may 

not even have been purchased yet. The database could therefore be employed to establish 

statistical relationships between those highly verifiable data and the target appliance 

variable, using data coming from already electrified customers. In this sense, the 

database’s main field of use will be using the proxy approach described by Blodgett et al. 

(Blodgett et al., 2017). Similarly to the work conducted by Fabini et al. (Fabini et al., 2014), 

ad-hoc metrics could be employed to assess the multidimensional distance between users 

within the database and soon-to-be-electrified ones. Thus, the statistical relationships 

obtained within the database could be extended to obtain reliable appliance ownership 

estimates for not electrified users. The presence, within the database, of heterogeneous 

information from the eight different factor classes will allow to explore more potential 

correlations and increase the multidimensionality of the metrics with respect to the study 

by Fabini et al. which considered only socio-economic variables. 

The developed archetypes, integrated in a mini-grid sizing tool, are openly available on the 

GitHub Repository: https://github.com/SESAM-Polimi/Micro-gridsPy-SESAM/tree/Micro-

gridsPy-2.0 

 

 

3.3 Demand Validation 

3.3.1 Archetypes: validation of appliance adoption 

The validation of the constructed demand archetypes has been conducted relying on data 

collected in Rwanda for 60 rural households from 7 villages. Along with a detailed list of 

owned electrical appliances by each user, income data has been collected. This allows to 

perform a wealth-specific validation of archetypical appliance adoption against real 

observations. In order to link each household to one of the five wealth tiers composing the 

archetypes, statistical data about rural income at national level have been retrieved (EICV 

3 THEMATIC REPORT - Income | National Institute of Statistics Rwanda, 2012). These data 

provided a division by income quintiles based on a sample of 2253 observations, of which 

only 10% related to urban households living in Kigali city. Assuming that rural households 

are the most represented in the sample, the quintile division has been linked to the 

archetypical division in wealth tiers, Table 13. Each of the 60 households has been then 

matched to an archetypical wealth tier. The resulting distribution of households is reported 

in Table 14. 

 

Table 13 - Division of income quintiles for Rwanda (EICV 3 THEMATIC REPORT - 

Income | National Institute of Statistics Rwanda, 2012]. 
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Table 14 - Distribution of households according to collect income data and 

archetypical wealth tiers. 

Wealth tier (WT) Number of Households 

1 48 

2 5 

3 6 

4 0 

5 0 

 

The cooling behavior assumed is “No Cooling Days”, i.e. no fans are assumed to be owned 

in all income tiers: this choice is justified by the analysis of hourly temperature profiles for 

the year 2020, retrieved from PVGIS (Šúri et al., 2005), for three villages of the sample. 

Yearly average temperatures are 22°C for Kabuye village, 21°C for Rutenderi and 18°C for 

Nyakabanda. Temperature surpasses 30°C only for Kabuye village for 17 days in the year 

(Figure 52).  

In order to compare the adoption of the i-th appliance between the archetypical and 

observed j-th household, the mean bias error (MBEi) on the number N of adopted units has 

been calculated for each wealth tier T as: 

𝑀𝐵𝐸𝑖,𝑇 =
1

𝑛
∑(𝑁𝑖𝑗,𝑇

𝑎𝑟𝑐ℎ − 𝑁𝑖𝑗,𝑇
𝑜𝑏𝑠)

𝑛

𝑗=1

 (13) 

Negative values of MBEi,T highlight an underestimation in the archetypical number of the i-

th appliance for tier T. Since observed data highlight the presence of appliances not 

considered by the archetypes (e.g. blender, microwave oven, stove electric coil), this leads 

systematically to negative MBEs for such appliances.  
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Figure 52 - Hourly temperature profile at 2 meters for Kabuye village, Rutenderi 

and Nyakabanda. 

The obtained results are plotted in Figure 53 and show in general underestimation of the 

number of appliances, notably light bulbs and radios. Archetypes indeed estimate on 

average 2 light bulbs less than observed for tier 1 and 1.5 for tier 3. Radios are 

underestimated by 1 unit for tier 1 and 0.5 units for tier 3. Tiers 2 and 3 show the adoption 

of appliances not included by the archetypes: irons, kettles, pressure cookers, blenders, 

microwaves and electric coils. For tier 3, the underestimation of irons (-0.7) and electric 

pressure cookers (-0.5) is relevant due to the high power consumption of such appliances. 

These results however in a low impact due to the 10% share of tier 3 households in the 

sample. 

 

Figure 53 - MBE between archetypical and observed appliance adoption 

according to the different wealth tier assumed in this work. 

 

In conclusion, even though the inclusion of non-predicted appliances turns out to be 

necessary, the approximation provided by the archetypes can be considered acceptable for 

the analysed sample. A larger dataset is however required to support and have a more 

robust validation.  
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4. Final remarks 

The work presented in this report is part of the activities under development in SETaDiSMA 

project and contributes to the identification of the most adequate databases for wind and 

solar power estimation as well as the most adequate methodology for load demand 

estimation. This information is crucial to properly design and plan a micro-grid investment 

and to propose a first guideline to optimally size micro-grid projects given the socio-

economic information of the site, and perform validation on real case studies. 

The main databases publicly available to support the wind and solar resource assessment 

procedures on the regions under study were presented, as well as validation of these 

databases using the few ground-based stations for which data was available. Seven 

locations were analyzed in the case of wind resource assessment. Results show that 

database's quality highly depends on the terrain and roughness classes. The obtained 

results are expected to occur since databases uses have a coarse spatial resolution to 

represent the variability of the wind speed and direction over complex terrain or locals with 

medium/high roughness. Therefore, ideally, to properly address the wind power integration 

into mini-grids/national power systems, databases for wind speed and direction 

characterization with hourly (or sub-hourly) resolution and high spatial resolution covering 

the African continent should be made publicly available. Nevertheless, results suggest the 

NASA-MERRA2 database provide a slightly better representation of the wind resource in 

comparison with ECMWF-ERA5.  

For the solar resource assessment, based on the three stations analyzed as well as in the 

literature review, it is concluded that the databases' publicly available already provide GHI 

data with high accuracy. In specific, for the regions under analysis, the Copernicus 

Atmospheric Monitoring Service (CAMS) database presented the more accurate results and 

is, therefore, the most suitable for the work under development. 

From the review conducted in this framework that the most adopted techniques for load 

estimation are two. i) Top-down approaches, in which the load is assigned to categories of 

users according to fixed parameters, usually wealth related. ii) Bottom-up approaches, in 

which the load curve is formulated based on specific characteristics of the user, by defining 

the energy consumption behaviour of every specific user.  

In the context of this work, a ready-to-use tool for load estimation is proposed, validated 

and made available through a GitHub repository, in the form of load consumption 

archetypes. The archetypes are conceived for energy modelling purposes specifically, and 

are in fact presented in an integration with a mini-grid sizing tool. The purpose of the 

archetypes is that of providing a tool for load estimation in the case of scarcity of data on 

the context of operation. A more data-intensive approach is also presented, in the form of 

a database correlating socio-economic data with appliance adoption and use patterns, this 

database would have the scope of allowing to generate inputs for load curve simulation 

tools based on common socio-economic and cultural traits among villages.  

More available data from the visited mini-grids in the future might allow to better validate 

and formulate both the approaches proposed. 
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